ﻻ يوجد ملخص باللغة العربية
One goal of contemporary particle physics is to determine the mixing angles and mass-squared differences that constitute the phenomenological constants that describe neutrino oscillations. Of great interest are not only the best fit values of these constants but also their errors. Some of the neutrino oscillation data is statistically poor and cannot be treated by normal (Gaussian) statistics. To extract confidence intervals when the statistics are not normal, one should not utilize the value for chisquare versus confidence level taken from normal statistics. Instead, we propose that one should use the normalized likelihood function as a probability distribution; the relationship between the correct chisquare and a given confidence level can be computed by integrating over the likelihood function. This allows for a definition of confidence level independent of the functional form of the !2 function; it is particularly useful for cases in which the minimum of the !2 function is near a boundary. We present two pedagogic examples and find that the proposed method yields confidence intervals that can differ significantly from those obtained by using the value of chisquare from normal statistics. For example, we find that for the first data release of the T2K experiment the probability that chisquare is not zero, as defined by the maximum confidence level at which the value of zero is not allowed, is 92%. Using the value of chisquare at zero and assigning a confidence level from normal statistics, a common practice, gives the over estimation of 99.5%.
A neutrino-oscillation analysis is performed of the more finely binned Super-K atmospheric, MINOS, and CHOOZ data in order to examine the impact of neutrino hierarchy in this data set upon the value of $theta_{13}$ and the deviation of $theta_{23}$ f
Geo-reactor models suggest the existence of natural nuclear reactors at different deep-earth locations with loosely defined output power. Reactor fission products undergo beta decay with the emission of electron antineutrinos, which routinely escape
Neutrino mixing parameters are subject to quantum corrections and hence are scale dependent. This means that the mixing parameters associated to the production and detection of neutrinos need not coincide since these processes are characterized by di
We assess the utility of an optimization-based data assimilation (D.A.) technique for treating the problem of nonlinear neutrino flavor transformation in core collapse supernovae. D.A. uses measurements obtained from a physical system to estimate the
We borrow the general idea of renormalization-group equations (RGEs) to understand how neutrino masses and flavor mixing parameters evolve when neutrinos propagate in a medium, highlighting a meaningful possibility that the genuine flavor quantities