ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppression of f-Electron Itinerancy in CeRu2Si2 by a Strong Magnetic Field

128   0   0.0 ( 0 )
 نشر من قبل Yasuhiro Matsuda
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The valence state of Ce in a canonical heavy fermion compound CeRu2Si2 has been investigated by synchrotron X-ray absorption spectroscopy at 1.8 K in high magnetic fields of up to 40 T. The valence was slightly larger than for the pure trivalent state (Ce3+: f1), as expected in heavy fermion compounds, and it decreased toward the trivalent state as the magnetic field was increased. The field-induced valence reduction indicates that the itinerant character of the 4f electrons in CeRu2Si2 was suppressed by a strong magnetic field. The suppression was gradual and showed characteristic magnetic field dependence, which reflects the metamagnetism around Hm sim 8 T. The itinerant character persisted, even at 40 T (sim 5Hm), suggesting that the Kondo bound state is continuously broken by magnetic fields and that it should completely collapse at fields exceeding 200 T.



قيم البحث

اقرأ أيضاً

135 - J. H. Lee , J. Ma , S. E. Hahn 2017
Localized spins and itinerant electrons rarely coexist in geometrically-frustrated spinel lattices. We show that the spinel CoV2O4 stands at the crossover from insulating to itinerant behavior and exhibits a complex interplay between localized spins and itinerant electrons. In contrast to the expected paramagnetism, localized spins supported by enhanced exchange couplings are frustrated by the effects of delocalized electrons. This frustration produces a non-collinear spin state and may be responsible for macroscopic spin-glass behavior. Competing phases can be uncovered by external perturbations such as pressure or magnetic field, which enhance the frustration.
The shakeup emission spectrum in a two-dimensional electron gas in a strong magnetic field is calculated analytically. The case of a localized photocreated hole is studied and the calculations are performed with a Nozieres-De Dominicis-like Hamiltoni an. The hole potential is assumed to be small compared to the cyclotron energy and is therefore treated as a perturbation. Two competing many-body effects, the shakeup of the electron gas in the optical transition, and the excitonic effect, contribute to the shakeup satellite intensities. It is shown, that the range of the hole potential essentially influences the shakeup spectrum. For a short range interaction the above mentioned competition is more important and results in the shakeup emission quenching when electrons occupy only the lowest Landau level. When more than one Landau level is filled, the intensities of the shakeup satellites change with magnetic field nonmonotonically. If the interaction is long range, the Fermi sea shakeup processes dominate. Then, the satellite intensities smoothly decrease when the magnetic field increases and there is no suppression of the shakeup spectrum when the only lowest Landau level is filled. It is shown also that a strong hole localization is not a necessary condition for the SU spectrum to be observed. If the hole localization length is not small compared to the magnetic length, the SU spectrum still exists. Only the number of contributions to the SU spectrum reduces and the shakeup processes are always dominant.
115 - J. Ma , J. H. Lee , S. E. Hahn 2014
The crossover from localized- to itinerant-electron behavior is associated with many intriguing phenomena in condensed-matter physics. In this paper, we investigate the crossover from localized to itinerant regimes in the spinel system Mn$_{1-x}$Co$_ x$V$_2$O$_4$. At low Co doping, orbital order (OO) of the localized electrons on the V3+ ions suppresses magnetic frustration by triggering a tetragonal distortion. With Co doping, electronic itinerancy melts the OO and suppresses the structural phase transition while the reduced spin-lattice coupling produces magnetic frustration. Neutron scattering measurements and first-principles-guided spin models reveal that the non-collinear state at high Co doping is produced by weakened local anisotropy and enhanced Co-V spin interactions.
The nature of the Fermi surface observed in the recently discovered family of unconventional insulators starting with SmB$_6$ and subsequently YbB$_{12}$ is a subject of intense inquiry. Here we shed light on this question by comparing quantum oscill ations between the high magnetic field-induced metallic regime in YbB$_{12}$ and the unconventional insulating regime. In the field-induced metallic regime beyond 47 T, we find prominent quantum oscillations in the contactless resistivity characterised by multiple frequencies up to at least 3000 T and heavy effective masses up to at least 17 $m_text{e}$, characteristic of an $f$-electron hybridised metallic Fermi surface. The growth of quantum oscillation amplitude at low temperatures in electrical transport and magnetic torque in insulating YbB$_{12}$ is closely similar to the Lifshitz-Kosevich low temperature growth of quantum oscillation amplitude in field-induced metallic YbB$_{12}$, pointing to an origin of quantum oscillations in insulating YbB$_{12}$ from in-gap neutral low energy excitations. The field-induced metallic regime of YbB$_{12}$ is characterised by more Fermi surface sheets of heavy quasiparticle effective mass that emerge in addition to the heavy Fermi surface sheets yielding multiple quantum oscillation frequencies below 1000 T observed in both insulating and metallic regimes. We thus observe a heavy multi-component Fermi surface in which $f$-electron hybridisation persists from the unconventional insulating to the field-induced metallic regime of YbB$_{12}$, which is in distinct contrast to the unhybridised conduction electron Fermi surface observed in the case of the unconventional insulator SmB$_6$. Our findings require a different theoretical model of neutral in-gap low energy excitations in which the $f$-electron hybridisation is retained in the case of the unconventional insulator YbB$_{12}$.
Electron bilayers in a strong magnetic field exhibit insulating behavior for a wide range of interlayer separation $d$ for total Landau level fillings $ uleq 1/2$, which has been interpreted in terms of a pinned crystal. We study theoretically the co mpetition between many strongly correlated liquid and crystal states and obtain the phase diagram as a function of quantum well width and $d$ for several filling factors of interest. We predict that three crystal structures can be realized: (a) At small $d$, the Triangular Ising AntiFerromagnetic (TIAF) crystal is stabilized in which the particles overall form a single-layer like triangular crystal while satisfying the condition that no nearest-neighbor triangle has all three particles in the same layer. (b) At intermediate $d$, a Correlated Square (CS) crystal is stabilized, in which particles in each layer form a square lattice, with the particles in one layer located directly across the centers of the squares of the other. (c) At large $d$, we find a Bilayer Graphene (BG) crystal in which the A and B sites of the graphene lattice lie in different layers. All crystals that we predict are strongly correlated crystals of composite fermions; a theory incorporating only electron Hartree-Fock crystals does not find any crystals besides the `trivial ones occurring at large interlayer separations for total filling factor $ uleq1/3$ (when layers are uncorrelated and each layer is in the long familiar single-layer crystal phase). The TIAF, CS and BG crystals come in several varieties, with different flavors of composite fermions and different interlayer correlations. The appearance of these exotic crystal phases adds to the richness of the physics of electron bilayers in a strong magnetic field, and also provides insight into experimentally observed bilayer insulator as well as transitions within the insulating part of the phase diagram.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا