ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Change of the Inner Boundary of an Optically Thick Accretion Disk around White Dwarfs Using the Dwarf Nova SS Cyg as an Example

110   0   0.0 ( 0 )
 نشر من قبل Revnivtsev Mikhail
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. G. Revnivtsev




اسأل ChatGPT حول البحث

We present the results of our studies of the aperiodic optical flux variability for SS Cyg, an accreting binary systemwith a white dwarf. The main set of observational data presented here was obtained with the ANDOR/iXon DU-888 photometer mounted on the RTT-150 telescope, which allowed a record(for CCD photometers) time resolution up to 8 ms to be achieved. The power spectra of the sources flux variability have revealed that the aperiodic variability contains information about the inner boundary of the optically thick flow in the binary system. We show that the inner boundary of the optically thick accretion disk comes close to the white dwarf surface at the maximum of the sources bolometric light curve, i.e., at the peak of the instantaneous accretion rate onto the white dwarf, while the optically thick accretion disk is truncated at distances 8.5e9 cm ~10 R_{WD} in the low state. We suggest that the location of the inner boundary of the accretion disk in the binary can be traced by studying the parameters of the power spectra for accreting white dwarfs. In particular, this allows the mass of the accreting object to be estimated.



قيم البحث

اقرأ أيضاً

112 - M. Kromer 2007
Dwarf nova outbursts result from enhanced mass transport through the accretion disc of a cataclysmic variable system. We assess the question of whether these outbursts are caused by an enhanced mass transfer from the late-type main sequence star on to the white dwarf (so-called mass transfer instability model, MTI) or by a thermal instability in the accretion disc (disc instability model, DIM). We compute non-LTE models and spectra of accretion discs in quiescence and outburst and construct spectral time sequences for discs over a complete outburst cycle. We then compare our spectra to published optical spectroscopy of the dwarf nova SS Cygni. In particular, we investigate the hydrogen and helium line profiles that are turning from emission into absorption during the rise to outburst. The evolution of the hydrogen and helium line profiles during the rise to outburst and decline clearly favour the disc-instability model. Our spectral model sequences allow us to distinguish inside-out and outside-in moving heating waves in the disc of SS Cygni, which can be related to symmetric and asymmetric outburst light curves, respectively.
We report the discovery of a scattering component around the HD 141569 A circumstellar debris system, interior to the previously known inner ring. The discovered inner disk component, obtained in broadband optical light with HST/STIS coronagraphy, wa s imaged with an inner working angle of 0.25, and can be traced from 0.4 (~46 AU) to 1.0 (~116 AU) after deprojection using i=55deg. The inner disk component is seen to forward scatter in a manner similar to the previously known rings, has a pericenter offset of ~6 AU, and break points where the slope of the surface brightness changes. It also has a spiral arm trailing in the same sense as other spiral arms and arcs seen at larger stellocentric distances. The inner disk spatially overlaps with the previously reported warm gas disk seen in thermal emission. We detect no point sources within 2 (~232 AU), in particular in the gap between the inner disk component and the inner ring. Our upper limit of 9+/-3 M_J is augmented by a new dynamical limit on single planetary mass bodies in the gap between the inner disk component and the inner ring of 1 M_J, which is broadly consistent with previous estimates.
In this paper we analyzed the behavior of the unusual dwarf nova EM Cyg using the data obtained in April-October, 2007 in Vyhorlat observatory (Slovak Republic) and in September, 2006 in Crimean Astrophysical Observatory (Ukraine). During our observa tions EM Cyg has shown outbursts in every 15-40 days. Because on the light curves of EM Cyg the partial eclipse of an accretion disc is observed we applied the eclipse mapping technique to reconstruct the temperature distribution in eclipsed parts of the disc. Calculations of the accretion rate in the system were made for the quiescent and the outburst states of activity for different distances.
We present a detailed analysis of the white dwarf luminosity functions derived from the local 40 pc sample and the deep proper motion catalog of Munn et al (2014, 2017). Many of the previous studies ignored the contribution of thick disk white dwarfs to the Galactic disk luminosity function, which results in an erronous age measurement. We demonstrate that the ratio of thick/thin disk white dwarfs is roughly 20% in the local sample. Simultaneously fitting for both disk components, we derive ages of 6.8-7.0 Gyr for the thin disk and 8.7 $pm$ 0.1 Gyr for the thick disk from the local 40 pc sample. Similarly, we derive ages of 7.4-8.2 Gyr for the thin disk and 9.5-9.9 Gyr for the thick disk from the deep proper motion catalog, which shows no evidence of a deviation from a constant star formation rate in the past 2.5 Gyr. We constrain the time difference between the onset of star formation in the thin disk and the thick disk to be $1.6^{+0.3}_{-0.4}$ Gyr. The faint end of the luminosity function for the halo white dwarfs is less constrained, resulting in an age estimate of $12.5^{+1.4}_{-3.4}$ Gyr for the Galactic inner halo. This is the first time ages for all three major components of the Galaxy are obtained from a sample of field white dwarfs that is large enough to contain significant numbers of disk and halo objects. The resultant ages agree reasonably well with the age estimates for the oldest open and globular clusters.
We compared the number of faint stars detected in deep survey fields with the current stellar distribution model of the Galaxy and found that the detected number in the H band is significantly smaller than the predicted number. This indicates that M- dwarfs, the major component, are fewer in the halo and the thick disk. We used archived data of several surveys in both the north and south field of GOODS (Great Observatories Origins Deep Survey), MODS in GOODS-N, and ERS and CANDELS in GOODS-S. The number density of M-dwarfs in the halo has to be 20+/-13% relative to that in the solar vicinity, in order for the detected number of stars fainter than 20.5 mag in the H band to match with the predicted value from the model. In the thick disk, the number density of M-dwarfs must be reduced (52+/-13%) or the scale height must be decreased (~600 pc). Alternatively, overall fractions of the halo and thick disks can be significantly reduced to achieve the same effect, because our sample mainly consists of faint M-dwarfs. Our results imply that the M-dwarf population in regions distant from the Galactic plane is significantly smaller than previously thought. We then discussed the implications this has on the suitability of the model predictions for the prediction of non-companion faint stars in direct imaging extrasolar planet surveys by using the best-fit number densities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا