ترغب بنشر مسار تعليمي؟ اضغط هنا

DNA Self-Assembly and Computation Studied with a Coarse-grained Dynamic Bonded Model

159   0   0.0 ( 0 )
 نشر من قبل Carsten Svaneborg
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study DNA self-assembly and DNA computation using a coarse-grained DNA model within the directional dynamic bonding framework {[}C. Svaneborg, Comp. Phys. Comm. 183, 1793 (2012){]}. In our model, a single nucleotide or domain is represented by a single interaction site. Complementary sites can reversibly hybridize and dehybridize during a simulation. This bond dynamics induces a dynamics of the angular and dihedral bonds, that model the collective effects of chemical structure on the hybridization dynamics. We use the DNA model to perform simulations of the self-assembly kinetics of DNA tetrahedra, an icosahedron, as well as strand displacement operations used in DNA computation.



قيم البحث

اقرأ أيضاً

Using concepts from integral geometry, we propose a definition for a local coarse-grained curvature tensor that is well-defined on polygonal surfaces. This coarse-grained curvature tensor shows fast convergence to the curvature tensor of smooth surfa ces, capturing with accuracy not only the principal curvatures but also the principal directions of curvature. Thanks to the additivity of the integrated curvature tensor, coarse-graining procedures can be implemented to compute it over arbitrary patches of polygons. When computed for a closed surface, the integrated curvature tensor is identical to a rank-2 Minkowski tensor. We also provide an algorithm to extend an existing C++ package, that can be used to compute efficiently local curvature tensors on triangulated surfaces.
We perform a spatially resolved simulation study of an AND gate based on DNA strand displacement using several lengths of the toehold and the adjacent domains. DNA strands are modelled using a coarse-grained dynamic bonding model {[}C. Svaneborg, Com p. Phys. Comm. 183, 1793 (2012){]}. We observe a complex transition path from the initial state to the final state of the AND gate. This path is strongly influenced by non-ideal effects due to transient bubbles revealing undesired toeholds and thermal melting of whole strands. We have also characterized the bound and unbound kinetics of single strands, and in particular the kinetics of the total AND operation and the three distinct distinct DNA transitions that it is based on. We observe a exponential kinetic dependence on the toehold length of the competitive displacement operation, but that the gate operation time is only weakly dependent on both the toehold and adjacent domain length. Our gate displays excellent logical fidelity in three input states, and quite poor fidelity in the fourth input state. This illustrates how non-ideality can have very selective effects on fidelity. Simulations and detailed analysis such as those presented here provide molecular insights into strand displacement computation, that can be also be expected in chemical implementations.
233 - S. A. Egorov 2011
Integral equation theory is applied to a coarse-grained model of water to study potential of mean force between hydrophobic solutes. Theory is shown to be in good agreement with the available simulation data for methane-methane and fullerene-fulleren e potential of mean force in water; the potential of mean force is also decomposed into its entropic and enthalpic contributions. Mode coupling theory is employed to compute self-diffusion coefficient of water, as well as diffusion coefficient of a dilute hydrophobic solute; good agreement with molecular dynamics simulation results is found.
During the last decade coarse-grained nucleotide models have emerged that allow us to DNA and RNA on unprecedented time and length scales. Among them is oxDNA, a coarse-grained, sequence-specific model that captures the hybridisation transition of DN A and many structural properties of single- and double-stranded DNA. oxDNA was previously only available as standalone software, but has now been implemented into the popular LAMMPS molecular dynamics code. This article describes the new implementation and analyses its parallel performance. Practical applications are presented that focus on single-stranded DNA, an area of research which has been so far under-investigated. The LAMMPS implementation of oxDNA lowers the entry barrier for using the oxDNA model significantly, facilitates future code development and interfacing with existing LAMMPS functionality as well as other coarse-grained and atomistic DNA models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا