ترغب بنشر مسار تعليمي؟ اضغط هنا

Cometary Charge Exchange Diagnostics in UV and X-ray

198   0   0.0 ( 0 )
 نشر من قبل Dennis Bodewits
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since the initial discovery of cometary charge exchange emission, more than 20 comets have been observed with a variety of X-ray and UV observatories. This observational sample offers a broad variety of comets, solar wind environments and observational conditions. It clearly demonstrates that solar wind charge exchange emission provides a wealth of diagnostics, which are visible as spatial, temporal, and spectral emission features. We review the possibilities and limitations of each of those in this contribution.



قيم البحث

اقرأ أيضاً

We present the detection of new cometary X-ray emission lines in the 1.0 to 2.0 keV range using a sample of comets observed with the Chandra X-ray observatory and ACIS spectrometer. We have selected 5 comets from the Chandra sample with good signal-t o-noise spectra. The surveyed comets are: C/1999 S4 (LINEAR), C/1999 T1 (McNaught-Hartley), 153P/2002 (Ikeya-Zhang), 2P/2003 (Encke), and C/2008 8P (Tuttle). We modeled the spectra with an extended version of our solar wind charge exchange (SWCX) emission model (Bodewits et al. 2007). Above 1 keV, we find Ikeya-Zhang to have strong emission lines at 1340 and 1850 eV that we identify as being created by solar wind charge exchange lines of Mg XI and Si XIII, respectively, and weaker emission lines at 1470, 1600, and 1950 eV formed by SWCX of Mg XII, Mg XI, and Si XIV, respectively. The Mg XI and XII and Si XIII and XIV lines are detected at a significant level for the other comets in our sample (LS4, MH, Encke, 8P), and these lines promise additional diagnostics to be included in SWCX models. The silicon lines in the 1700 to 2000 eV range are detected for all comets, but with the rising background and decreasing cometary emission, we caution these detections need further confirmation with higher resolution instruments.
X-Ray and Ultraviolet (UV) observations of the outer solar atmosphere have been used for many decades to measure the fundamental parameters of the solar plasma. This review focuses on the optically thin emission from the solar atmosphere, mostly foun d at UV and X-ray (XUV) wavelengths, and discusses some of the diagnostic methods that have been used to measure electron densities, electron temperatures, differential emission measure (DEM), and relative chemical abundances. We mainly focus on methods and results obtained from high-resolution spectroscopy, rather than broad-band imaging. However, we note that the best results are often obtained by combining imaging and spectroscopic observations. We also mainly focus the review on measurements of electron densities and temperatures obtained from single ion diagnostics, to avoid issues related to the ionisation state of the plasma. We start the review with a short historical introduction on the main XUV high-resolution spectrometers, then review the basics of optically thin emission and the main processes that affect the formation of a spectral line. We mainly discuss plasma in equilibrium, but briefly mention non-equilibrium ionisation and non-thermal electron distributions. We also summarise the status of atomic data, which are an essential part of the diagnostic process. We then review the methods used to measure electron densities, electron temperatures, the DEM, and relative chemical abundances, and the results obtained for the lower solar atmosphere (within a fraction of the solar radii), for coronal holes, the quiet Sun, active regions and flares.
It has been proposed that the charge exchange (CX) process at the interface between hot and cool interstellar gases could contribute significantly to the observed soft X-ray emission in star forming galaxies. We analyze the XMM-Newton/RGS spectrum of M82, using a newly developed CX model combined with a single-temperature thermal plasma to characterize the volume-filling hot gas. The CX process is largely responsible for not only the strongly enhanced forbidden lines of the K$alpha$ triplets of various He-like ions, but also good fractions of the Ly$alpha$ transitions of C VI (~87%), O VIII and N VII ($gtrsim$50%) as well. In total about a quarter of the X-ray flux in the RGS 6-30 AA band originates in the CX. We infer an ion incident rate of $3times10^{51},rm{s^{-1}}$ undergoing CX at the hot and cool gas interface, and an effective area of the interface as $sim2times10^{45},{rm cm^2}$ that is one order of magnitude larger than the cross section of the global biconic outflow. With the CX contribution accounted for, the best fit temperature of the hot gas is 0.6 keV, and the metal abundances are approximately solar. We further show that the same CX/thermal plasma model also gives an excellent description of the EPIC-pn spectrum of the outflow Cap, projected at 11.6 kpc away from the galactic disk of M82. This analysis demonstrates that the CX is potentially an important contributor to the X-ray emission from starburst galaxies and also an invaluable tool to probe the interface astrophysics.
Aims. We study the soft X-ray emission induced by charge exchange (CX) collisions between solar-wind, highly charged ions and neutral atoms of the Martian exosphere. Methods. A 3D multi species hybrid simulation model with improved spatial resolution (130 km) is used to describe the interaction between the solar wind and the Martian neutrals. We calculated velocity and density distributions of the solar wind plasma in the Martian environment with realistic planetary ions description, using spherically symmetric exospheric H and O profiles. Following that, a 3D test-particle model was developed to compute the X-ray emission produced by CX collisions between neutrals and solar wind minor ions. The model results are compared to XMM-Newton observations of Mars. Results. We calculate projected X-ray emission maps for the XMM-Newton observing conditions and demonstrate how the X-ray emission reflects the Martian electromagnetic structure in accordance with the observed X-ray images. Our maps confirm that X-ray images are a powerful tool for the study of solar wind - planetary interfaces. However, the simulation results reveal several quantitative discrepancies compared to the observations. Typical solar wind and neutral coronae conditions corresponding to the 2003 observation period of Mars cannot reproduce the high luminosity or the corresponding very extended halo observed with XMM-Newton. Potential explanations of these discrepancies are discussed.
We present results from a sample of XMM-Newton and Suzaku observations of interstellar clouds that cast shadows in the soft X-ray background (SXRB) - the first uniform analysis of such a sample from these missions. By fitting to the on- and off-shado w spectra, we separated the foreground and Galactic halo components of the SXRB. We tested different foreground models - two solar wind charge exchange (SWCX) models and a Local Bubble (LB) model. We also examined different abundance tables. We found that Anders & Grevesse (1989) abundances, commonly used in previous SXRB studies, may result in overestimated foreground brightnesses and halo temperatures. We also found that assuming a single solar wind ionization temperature for a SWCX model can lead to unreliable results. We compared our measurements of the foreground emission with predictions of the SWCX emission from a smooth solar wind, finding only partial agreement. Using available observation-specific SWCX predictions and various plausible assumptions, we placed an upper limit on the LBs OVII intensity of ~0.8 photons/cm^2/s/sr (90% confidence). Comparing the halo results obtained with SWCX and LB foreground models implies that, if the foreground is dominated by SWCX and is brighter than ~1.5e-12 erg/cm^2/s/deg^2 (0.4-1.0 keV), then using an LB foreground model may bias the halo temperature upward and the 0.5-2.0 keV surface brightness downward by ~(0.2-0.3)e6 K and ~(1-2)e-12 erg/cm^2/s/deg^2, respectively. Similarly, comparing results from different observatories implies that there may be uncertainties in the halo temperature and surface brightness of up to ~0.2e6 K and ~25%, respectively, in addition to the statistical uncertainties. These uncertainties or biases may limit the ability of X-ray measurements to discriminate between Galactic halo models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا