ترغب بنشر مسار تعليمي؟ اضغط هنا

The ELM Survey. IV. 24 White Dwarf Merger Systems

218   0   0.0 ( 0 )
 نشر من قبل Mukremin Kilic
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new radial velocity and X-ray observations of extremely low-mass (ELM, 0.2 Msol) white dwarf candidates in the Sloan Digital Sky Survey (SDSS) Data Release 7 area. We identify seven new binary systems with 1-18 h orbital periods. Five of the systems will merge due to gravitational wave radiation within 10 Gyr, bringing the total number of merger systems found in the ELM Survey to 24. The ELM Survey has now quintupled the known merger white dwarf population. It has also discovered the eight shortest period detached binary white dwarf systems currently known. We discuss the characteristics of the merger and non-merger systems observed in the ELM Survey, including their future evolution. About half of the systems have extreme mass ratios. These are the progenitors of the AM Canum Venaticorum systems and supernovae .Ia. The remaining targets will lead to the formation of extreme helium stars, subdwarfs, or massive white dwarfs. We identify three targets that are excellent gravitational wave sources. These should be detected by the Laser Interferometer Space Antenna (LISA)-like missions within the first year of operation. The remaining targets are important indicators of what the Galactic foreground may look like for gravitational wave observatories.



قيم البحث

اقرأ أيضاً

We describe new radial velocity and X-ray observations of extremely low-mass white dwarfs (ELM WDs, ~0.2 Msol) in the Sloan Digital Sky Survey Data Release 4 and the MMT Hypervelocity Star survey. We identify four new short period binaries, including two merger systems. These observations bring the total number of short period binary systems identified in our survey to 20. No main-sequence or neutron star companions are visible in the available optical photometry, radio, and X-ray data. Thus, the companions are most likely WDs. Twelve of these systems will merge within a Hubble time due to gravitational wave radiation. We have now tripled the number of known merging WD systems. We discuss the characteristics of this merger sample and potential links to underluminous supernovae, extreme helium stars, AM CVn systems, and other merger products. We provide new observational tests of the WD mass-period distribution and cooling models for ELM WDs. We also find evidence for a new formation channel for single low-mass WDs through binary mergers of two lower mass objects.
152 - D. W. Hoard 2013
We have compiled photometric data from the Wide-field Infrared Survey Explorer All Sky Survey and other archival sources for the more than 2200 objects in the original McCook & Sion Catalog of Spectroscopically Identified White Dwarfs. We applied col or-selection criteria to identify 28 targets whose infrared spectral energy distributions depart from the expectation for the white dwarf photosphere alone. Seven of these are previously known white dwarfs with circumstellar dust disks, five are known central stars of planetary nebulae, and six were excluded for being known binaries or having possible contamination of their infrared photometry. We fit white dwarf models to the spectral energy distributions of the remaining ten targets, and find seven new candidates with infrared excess suggesting the presence of a circumstellar dust disk. We compare the model dust disk properties for these new candidates with a comprehensive compilation of previously published parameters for known white dwarfs with dust disks. It is possible that the current census of white dwarfs with dust disks that produce an excess detectable at K-band and shorter wavelengths is close to complete for the entire sample of known WDs to the detection limits of existing near-IR all-sky surveys. The white dwarf dust disk candidates now being found using longer wavelength infrared data are drawn from a previously underrepresented region of parameter space, in which the dust disks are overall cooler, narrower in radial extent, and/or contain fewer emitting grains.
141 - Warren R. Brown 2013
We present the discovery of 17 low mass white dwarfs (WDs) in short-period P<1 day binaries. Our sample includes four objects with remarkable log(g)~5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or on-going accretion. Notably, six of the WDs in our sample have binary merger times <10 Gyr. Four have >=0.9 Msun companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be milli-second pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.
We present the final sample of 98 detached double white dwarf (WD) binaries found in the Extremely Low Mass (ELM) Survey, a spectroscopic survey targeting <0.3 Msun He-core WDs completed in the Sloan Digital Sky Survey footprint. Over the course of t he survey we observed ancillary low mass WD candidates like GD278, which we show is a P=0.19 d double WD binary, as well as candidates that turn out to be field blue straggler/subdwarf A-type stars with luminosities too large to be WDs given their Gaia parallaxes. Here, we define a clean sample of ELM WDs that is complete within our target selection and magnitude range 15<g_0<20 mag. The measurements are consistent with 100% of ELM WDs being 0.0089 < P < 1.5 d double WD binaries, 35% of which belong to the Galactic halo. We infer these are mostly He+CO WD binaries given the measurement constraints. The merger rate of the observed He+CO WD binaries exceeds the formation rate of stable mass transfer AM CVn binaries by a factor of 25, and so the majority of He+CO WD binaries must experience unstable mass transfer and merge. The shortest-period systems like J0651+2844 are signature {it LISA} verification binaries that can be studied with gravitational waves and light.
127 - M. Dan , S. Rosswog (2 2013
We present a large parameter study where we investigate the structure of white dwarf (WD) merger remnants after the dynamical phase. A wide range of WD masses and compositions are explored and we also probe the effect of different initial conditions. We investigated the degree of mixing between the WDs, the conditions for detonations as well as the amount of gas ejected. We find that systems with lower mass ratios have more total angular momentum and as a result more mass is flung out in a tidal tail. Nuclear burning can affect the amount of mass ejected. Many WD binaries that contain a helium-rich WD achieve the conditions to trigger a detonation. In contrast, for carbon-oxygen transferring systems only the most massive mergers with a total mass above ~2.1 solar masses detonate. Even systems with lower mass may detonate long after the merger if the remnant remains above the Chandrasekhar mass and carbon is ignited at the centre. Finally, our findings are discussed in the context of several possible observed astrophysical events and stellar systems, such as hot subdwarfs, R Coronae Borealis stars, single massive white dwarfs, supernovae of type Ia and other transient events. A large database containing 225 white dwarf merger remnants is made available via a dedicated web page.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا