ﻻ يوجد ملخص باللغة العربية
Observations of the early rise and propagation phases of solar eruptive prominences can provide clues about the forces acting on them through the behavior of their acceleration with height. We have analyzed such an event, observed on 13 April 2010 by SWAP on PROBA2 and EUVI on STEREO. A feature at the top of the erupting prominence was identified and tracked in images from the three spacecraft. The triangulation technique was used to derive the true direction of propagation of this feature. The reconstructed points were fitted with two mathematical models: i) a power-law polynomial function and ii) a cubic smoothing spline, in order to derive the accelerations. The first model is characterized by five degrees of freedom while the second one is characterized by ten degrees of freedom. The results show that the acceleration increases smoothly and it is continuously increasing with height. We conclude that the prominence is not accelerated immediately by local reconnection but rather is swept away as part of a large-scale relaxation of the coronal magnetic field.
Context. Prominence eruptions provide key observations to understand the launch of coronal mass ejections as their cold plasma traces a part of the unstable magnetic configuration. Aims. We select a well observed case to derive observational constr
SWAP images from PROBA2 taken at 174 {AA} in the Fe IX/X lines are compared with simultaneous slitless flash spectra obtained during the solar total eclipse of 11 July, 2010. Myriads of faint low excitation emission lines together with the He I and H
We investigate the interaction of three consecutive large-scale coronal waves with a polar coronal hole, simultaneously observed on-disk by the Solar TErrestrial Relations Observatory (STEREO)-A spacecraft and on the limb by the PRoject for On-Board
We use The Sun Watcher with Active Pixel System detector and Image Processing (SWAP) imager onboard the Project for Onboard Autonomy 2 (PROBA2) mission to study the evolution of large-scale EUV structures in the solar corona observed throughout Solar
The solar photosphere, chromosphere and corona are known to rotate differentially as a function of latitude. To date, it is unclear if the solar transition region also rotates differentially. In this paper, we investigate differential rotational prof