ترغب بنشر مسار تعليمي؟ اضغط هنا

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample

139   0   0.0 ( 0 )
 نشر من قبل David Schlegel
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of galaxy clustering from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III (SDSS-III). These use the Data Release 9 (DR9) CMASS sample, which contains 264,283 massive galaxies covering 3275 square degrees with an effective redshift z=0.57 and redshift range 0.43 < z < 0.7. Assuming a concordance Lambda-CDM cosmological model, this sample covers an effective volume of 2.2 Gpc^3, and represents the largest sample of the Universe ever surveyed at this density, n = 3 x 10^-4 h^-3 Mpc^3. We measure the angle-averaged galaxy correlation function and power spectrum, including density-field reconstruction of the baryon acoustic oscillation (BAO) feature. The acoustic features are detected at a significance of 5sigma in both the correlation function and power spectrum. Combining with the SDSS-II Luminous Red Galaxy Sample, the detection significance increases to 6.7sigma. Fitting for the position of the acoustic features measures the distance to z=0.57 relative to the sound horizon DV /rs = 13.67 +/- 0.22 at z=0.57. Assuming a fiducial sound horizon of 153.19 Mpc, which matches cosmic microwave background constraints, this corresponds to a distance DV(z=0.57) = 2094 +/- 34 Mpc. At 1.7 per cent, this is the most precise distance constraint ever obtained from a galaxy survey. We place this result alongside previous BAO measurements in a cosmological distance ladder and find excellent agreement with the current supernova measurements. We use these distance measurements to constrain various cosmological models, finding continuing support for a flat Universe with a cosmological constant.



قيم البحث

اقرأ أيضاً

We present a one per cent measurement of the cosmic distance scale from the detections of the baryon acoustic oscillations in the clustering of galaxies from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky S urvey III (SDSS-III). Our results come from the Data Release 11 (DR11) sample, containing nearly one million galaxies and covering approximately $8,500$ square degrees and the redshift range $0.2<z<0.7$. We also compare these results with those from the publicly released DR9 and DR10 samples. Assuming a concordance $Lambda$CDM cosmological model, the DR11 sample covers a volume of 13,Gpc${}^3$ and is the largest region of the Universe ever surveyed at this density. We measure the correlation function and power spectrum, including density-field reconstruction of the baryon acoustic oscillation (BAO) feature. The acoustic features are detected at a significance of over $7,sigma$ in both the correlation function and power spectrum. Fitting for the position of the acoustic features measures the distance relative to the sound horizon at the drag epoch, $r_d$, which has a value of $r_{d,{rm fid}}=149.28,$Mpc in our fiducial cosmology. We find $D_V=(1264pm25,{rm Mpc})(r_d/r_{d,{rm fid}})$ at $z=0.32$ and $D_V=(2056pm20,{rm Mpc})(r_d/r_{d,{rm fid}})$ at $z=0.57$. At 1.0 per cent, this latter measure is the most precise distance constraint ever obtained from a galaxy survey. Separating the clustering along and transverse to the line-of-sight yields measurements at $z=0.57$ of $D_A=(1421pm20,{rm Mpc})(r_d/r_{d,{rm fid}})$ and $H=(96.8pm3.4,{rm km/s/Mpc})(r_{d,{rm fid}}/r_d)$. Our measurements of the distance scale are in good agreement with previous BAO measurements and with the predictions from cosmic microwave background data for a spatially flat cold dark matter model with a cosmological constant.
We analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset include s $1,198,006$ galaxies over the redshift range $0.2 < z < 0.75$. We divide this dataset into three (overlapping) redshift bins with the effective redshifts $zeff = 0.38$, $0.51$ and $0.61$. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as $sim 1000$ MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density field reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can separate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance $D_A(z)$ and the Hubble parameter $H(z)$ separately. We obtain two independent $1.6%$ and $1.5%$ constraints on $D_A(z)$ and $2.9%$ and $2.3%$ constraints on $H(z)$ for the low ($zeff=0.38$) and high ($zeff=0.61$) redshift bin, respectively. We obtain two independent $1%$ and $0.9%$ constraints on the angular averaged distance $D_V(z)$, when ignoring the Alcock-Paczynski effect. The detection significance of the BAO signal is of the order of $8sigma$ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within $Lambda$CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in~citet{Alam2016} to produce the final cosmological constraints from BOSS.
We present distance scale measurements from the baryon acoustic oscillation signal in the CMASS and LOWZ samples from the Data Release 12 of the Baryon Oscillation Spectroscopic Survey (BOSS). The total volume probed is 14.5 Gpc$^3$, a 10 per cent in crement from Data Release 11. From an analysis of the spherically averaged correlation function, we infer a distance to $z=0.57$ of $D_V(z)r^{rm fid}_{rm d}/r_ {rm d}=2028pm21$ Mpc and a distance to $z=0.32$ of $D_V(z)r^{rm fid}_{rm d}/r_{rm d}=1264pm22$ Mpc assuming a cosmology in which $r^{rm fid}_{rm d}=147.10$ Mpc. From the anisotropic analysis, we find an angular diameter distance to $z=0.57$ of $D_{rm A}(z)r^{rm fid}_{rm d}/r_{rm d}=1401pm21$ Mpc and a distance to $z=0.32$ of $981pm20$ Mpc, a 1.5 per cent and 2.0 per cent measurement respectively. The Hubble parameter at $z=0.57$ is $H(z)r_{rm d}/r^{rm fid}_{rm d}=100.3pm3.7$ km s$^{-1}$ Mpc$^{-1}$ and its value at $z=0.32$ is $79.2pm5.6$ km s$^{-1}$ Mpc$^{-1}$, a 3.7 per cent and 7.1 per cent measurement respectively. These cosmic distance scale constraints are in excellent agreement with a $Lambda$CDM model with cosmological parameters released by the recent Planck 2015 results.
We present the distance measurement to z = 0.32 using the 11th data release of the Sloan Digital Sky Survey-III Baryon Acoustic Oscillation Survey (BOSS). We use 313,780 galaxies of the low-redshift (LOWZ) sample over 7,341 square-degrees to compute $D_V = (1264 pm 25)(r_d/r_{d,fid})$ - a sub 2% measurement - using the baryon acoustic feature measured in the galaxy two-point correlation function and power-spectrum. We compare our results to those obtained in DR10. We study observational systematics in the LOWZ sample and quantify potential effects due to photometric offsets between the northern and southern Galactic caps. We find the sample to be robust to all systematic effects found to impact on the targeting of higher-redshift BOSS galaxies, and that the observed north-south tensions can be explained by either limitations in photometric calibration or by sample variance, and have no impact on our final result. Our measurement, combined with the baryonic acoustic scale at z = 0.57, is used in Anderson et al. (2013a) to constrain cosmological parameters.
We report on the small scale (0.5<r<40h^-1 Mpc) clustering of 78895 massive (M*~10^11.3M_sun) galaxies at 0.2<z<0.4 from the first two years of data from the Baryon Oscillation Spectroscopic Survey (BOSS), to be released as part of SDSS Data Release 9 (DR9). We describe the sample selection, basic properties of the galaxies, and caveats for working with the data. We calculate the real- and redshift-space two-point correlation functions of these galaxies, fit these measurements using Halo Occupation Distribution (HOD) modeling within dark matter cosmological simulations, and estimate the errors using mock catalogs. These galaxies lie in massive halos, with a mean halo mass of 5.2x10^13 h^-1 M_sun, a large scale bias of ~2.0, and a satellite fraction of 12+/-2%. Thus, these galaxies occupy halos with average masses in between those of the higher redshift BOSS CMASS sample and the original SDSS I/II LRG sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا