ترغب بنشر مسار تعليمي؟ اضغط هنا

Certified quantum non-demolition measurement of material systems

212   0   0.0 ( 0 )
 نشر من قبل Morgan Mitchell
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An extensive debate on quantum non-demolition (QND) measurement, reviewed in Grangier et al. [Nature, {bf 396}, 537 (1998)], finds that true QND measurements must have both non-classical state-preparation capability and non-classical information-damage tradeoff. Existing figures of merit for these non-classicality criteria require direct measurement of the signal variable and are thus difficult to apply to optically-probed material systems. Here we describe a method to demonstrate both criteria without need for to direct signal measurements. Using a covariance matrix formalism and a general noise model, we compute meter observables for QND measurement triples, which suffice to compute all QND figures of merit. The result will allow certified QND measurement of atomic spin ensembles using existing techniques.



قيم البحث

اقرأ أيضاً

Quantum non-demolition (QND) measurements improve sensitivity by evading measurement back-action. The technique was first proposed to detect mechanical oscillations in gravity wave detectors,and demonstrated in the measurement of optical fields, lead ing to the development of rigorous criteria to distinguish QND from similar non-classical measurements. Recent QND measurements of macroscopic material systems such as atomic ensembles, and mechanical oscillators, show some QND features, but not full QND character. Here we demonstrate certified QND measurement of the collective spin of an atomic ensemble. We observe quantum state preparation (QSP) and information-damage trade-off (IDT) beyond their classical limits by seven and twelve standard deviations, respectively. Our techniques complement recent work with microscopic systems, and can be used for quantum metrology and memory, the preparation and detection of non-gaussian states, and proposed quantum simulation and information protocols. They should enable QND measurements of dynamical quantum variables and the realization of QND-based quantum information protocols.
130 - Wesley C. Campbell 2020
High quality, fully-programmable quantum processors are available with small numbers (<1000) of qubits, and the scientific potential of these near term machines is not well understood. If the small number of physical qubits precludes practical quantu m error correction, how can these error-susceptible processors be used to perform useful tasks? We present a strategy for developing quantum error detection for certain gate imperfections that utilizes additional internal states and does not require additional physical qubits. Examples for adding error detection are provided for a universal gate set in the trapped ion platform. Error detection can be used to certify individual gate operations against certain errors, and the irreversible nature of the detection allows a result of a complex computation to be checked at the end for error flags.
With the advent of gravitational wave detectors employing squeezed light, quantum waveform estimation---estimating a time-dependent signal by means of a quantum-mechanical probe---is of increasing importance. As is well known, backaction of quantum m easurement limits the precision with which the waveform can be estimated, though these limits can in principle be overcome by quantum nondemolition (QND) measurement setups found in the literature. Strictly speaking, however, their implementation would require infinite energy, as their mathematical description involves Hamiltonians unbounded from below. This raises the question of how well one may approximate nondemolition setups with finite energy or finite-dimensional realizations. Here we consider a finite-dimensional waveform estimation setup based on the quasi-ideal clock and show that the estimation errors due to approximating the QND condition decrease slowly, as a power law, with increasing dimension. As a result, we find that good QND approximations require large energy or dimensionality. We argue that this result can be expected to also hold for setups based on truncated oscillators or spin systems.
We present a quantum self-testing protocol to certify measurements of fermion parity involving Majorana fermion modes. We show that observing a set of ideal measurement statistics implies anti-commutativity of the implemented Majorana fermion parity operators, a necessary prerequisite for Majorana detection. Our protocol is robust to experimental errors. We obtain lower bounds on the fidelities of the state and measurement operators that are linear in the errors. We propose to analyze experimental outcomes in terms of a contextuality witness $W$, which satisfies $langle W rangle le 3$ for any classical probabilistic model of the data. A violation of the inequality witnesses quantum contextuality, and the closeness to the maximum ideal value $langle W rangle=5$ indicates the degree of confidence in the detection of Majorana fermions.
70 - Guo-Ping Guo , Chuan-Feng Li , 2001
Quantun non-demolition (QND) variables are generlized to the nonlocal ones by proposing QND measurement networks of Bell states and multi-partite GHZ states, which means that we can generate and measure them without any destruction. One of its prospe ctive applications in the quantum authentication system of the Quantum Security Automatic Teller Machine (QSATM) which is much more reliable than the classical ones is also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا