We are concerned with the long-time behavior of the growth-fragmentation equation. We prove fine estimates on the principal eigenfunctions of the growth-fragmentation operator, giving their first-order behavior close to 0 and $+infty$. Using these estimates we prove a spectral gap result by following the technique in [Caceres, Canizo, Mischler 2011, JMPA], which implies that solutions decay to the equilibrium exponentially fast. The growth and fragmentation coefficients we consider are quite general, essentially only assumed to behave asymptotically like power laws.