ﻻ يوجد ملخص باللغة العربية
We study a twist decomposition of diffractive structure functions in the diffractive deep inelastic scattering (DDIS) at HERA. At low Q2 and at large energy the data exhibit a strong excess, up to about 100%, above the twist 2 NLO DGLAP description. The excess in consistent with higher twist effects. It is found, that complementing the DGLAP fit by twist 4 and 6 components of the GBW saturation model leads to a good description of data at low Q2. We conclude that the DDIS at HERA provides the first, strong evidence of higher twist effects in DIS.
HERA data on diffractive DIS show deviations from twist 2 DGLAP predictions below $Q^2sim 5$ GeV$^2$ at low pomeron $xi$, which may reach up to 100%. These deviations are consistent with higher twists effects extracted from the saturation model. It i
A recent H1 measurement of triple differential dijet cross sections in electron-proton interactions in the region of photon virtualities 2<Q2<80 GeV is presented and compared to LO and NLO QCD predictions. Effects that go beyond the fixed-order NLO QCD calculations are identified.
In this letter we report the direct perturbative QCD evaluation of twist-4 effects in diffractive DIS. They are large and have a strong impact on the $Q^2$ dependence of diffractive structure functions at large $beta$. Based on the AGK rules, we comm
The higher twist corrections $h^N(x)/Q^2$ to the spin dependent proton and neutron $g_1$ structure functions are extracted from the world data on $g_1(x,Q^2)$ in a model independent way and found to be non-negligible. Their role in determining the po
We present a NLO calculation of prompt photon production in DIS. The calculation involves direct, fragmentation and resolved contributions. It is performed in the virtual-photon proton center-of-mass system. A comparison of the theoretical results with HERA data is carried out.