ترغب بنشر مسار تعليمي؟ اضغط هنا

Shrinkage Confidence Procedures

142   0   0.0 ( 0 )
 نشر من قبل George Casella
 تاريخ النشر 2012
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The possibility of improving on the usual multivariate normal confidence was first discussed in Stein (1962). Using the ideas of shrinkage, through Bayesian and empirical Bayesian arguments, domination results, both analytic and numerical, have been obtained. Here we trace some of the developments in confidence set estimation.



قيم البحث

اقرأ أيضاً

124 - Kun Zhou , Ker-Chau Li , 2019
The issue of honesty in constructing confidence sets arises in nonparametric regression. While optimal rate in nonparametric estimation can be achieved and utilized to construct sharp confidence sets, severe degradation of confidence level often happ ens after estimating the degree of smoothness. Similarly, for high-dimensional regression, oracle inequalities for sparse estimators could be utilized to construct sharp confidence sets. Yet the degree of sparsity itself is unknown and needs to be estimated, causing the honesty problem. To resolve this issue, we develop a novel method to construct honest confidence sets for sparse high-dimensional linear regression. The key idea in our construction is to separate signals into a strong and a weak group, and then construct confidence sets for each group separately. This is achieved by a projection and shrinkage approach, the latter implemented via Stein estimation and the associated Stein unbiased risk estimate. Our confidence set is honest over the full parameter space without any sparsity constraints, while its diameter adapts to the optimal rate of $n^{-1/4}$ when the true parameter is indeed sparse. Through extensive numerical comparisons, we demonstrate that our method outperforms other competitors with big margins for finite samples, including oracle methods built upon the true sparsity of the underlying model.
We propose a novel class of dynamic shrinkage processes for Bayesian time series and regression analysis. Building upon a global-local framework of prior construction, in which continuous scale mixtures of Gaussian distributions are employed for both desirable shrinkage properties and computational tractability, we model dependence among the local scale parameters. The resulting processes inherit the desirable shrinkage behavior of popular global-local priors, such as the horseshoe prior, but provide additional localized adaptivity, which is important for modeling time series data or regression functions with local features. We construct a computationally efficient Gibbs sampling algorithm based on a Polya-Gamma scale mixture representation of the proposed process. Using dynamic shrinkage processes, we develop a Bayesian trend filtering model that produces more accurate estimates and tighter posterior credible intervals than competing methods, and apply the model for irregular curve-fitting of minute-by-minute Twitter CPU usage data. In addition, we develop an adaptive time-varying parameter regression model to assess the efficacy of the Fama-French five-factor asset pricing model with momentum added as a sixth factor. Our dynamic analysis of manufacturing and healthcare industry data shows that with the exception of the market risk, no other risk factors are significant except for brief periods.
A robust estimator is proposed for the parameters that characterize the linear regression problem. It is based on the notion of shrinkages, often used in Finance and previously studied for outlier detection in multivariate data. A thorough simulation study is conducted to investigate: the efficiency with normal and heavy-tailed errors, the robustness under contamination, the computational times, the affine equivariance and breakdown value of the regression estimator. Two classical data-sets often used in the literature and a real socio-economic data-set about the Living Environment Deprivation of areas in Liverpool (UK), are studied. The results from the simulations and the real data examples show the advantages of the proposed robust estimator in regression.
136 - Christoph Dalitz 2018
Introductory texts on statistics typically only cover the classical two sigma confidence interval for the mean value and do not describe methods to obtain confidence intervals for other estimators. The present technical report fills this gap by first defining different methods for the construction of confidence intervals, and then by their application to a binomial proportion, the mean value, and to arbitrary estimators. Beside the frequentist approach, the likelihood ratio and the highest posterior density approach are explained. Two methods to estimate the variance of general maximum likelihood estimators are described (Hessian, Jackknife), and for arbitrary estimators the bootstrap is suggested. For three examples, the different methods are evaluated by means of Monte Carlo simulations with respect to their coverage probability and interval length. R code is given for all methods, and the practitioner obtains a guideline which method should be used in which cases.
We consider the problem of simultaneous estimation of a sequence of dependent parameters that are generated from a hidden Markov model. Based on observing a noise contaminated vector of observations from such a sequence model, we consider simultaneou s estimation of all the parameters irrespective of their hidden states under square error loss. We study the roles of statistical shrinkage for improved estimation of these dependent parameters. Being completely agnostic on the distributional properties of the unknown underlying Hidden Markov model, we develop a novel non-parametric shrinkage algorithm. Our proposed method elegantly combines textit{Tweedie}-based non-parametric shrinkage ideas with efficient estimation of the hidden states under Markovian dependence. Based on extensive numerical experiments, we establish superior performance our our proposed algorithm compared to non-shrinkage based state-of-the-art parametric as well as non-parametric algorithms used in hidden Markov models. We provide decision theoretic properties of our methodology and exhibit its enhanced efficacy over popular shrinkage methods built under independence. We demonstrate the application of our methodology on real-world datasets for analyzing of temporally dependent social and economic indicators such as search trends and unemployment rates as well as estimating spatially dependent Copy Number Variations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا