ترغب بنشر مسار تعليمي؟ اضغط هنا

Prospects for an advanced Kennedy-Thorndike experiment in low Earth orbit

218   0   0.0 ( 0 )
 نشر من قبل John Lipa
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the potential for a small space mission to perform an advanced Kennedy-Thorndike test of Special Relativity using the large and rapid velocity modulation available in low Earth orbit. An improvement factor of ~100 over present ground results is expected, with an additional factor of 10 possible using more advanced technology.



قيم البحث

اقرأ أيضاً

We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is BNS, NSBH, and BBH systems. The ability to localize the sources is given as a sky-area probability, luminosity distance, and comoving volume. The median sky localization area (90% credible region) is expected to be a few hundreds of square degrees for all types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network. The median sky localization area will improve to a few tens of square degrees during O4 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. We evaluate sensitivity and localization expectations for unmodeled signal searches, including the search for intermediate mass black hole binary mergers.
174 - G. Mazzolo , F. Salemi , M. Drago 2014
We estimated the sensitivity of the upcoming advanced, ground-based gravitational-wave observatories (the upgraded LIGO and Virgo and the KAGRA interferometers) to coalescing intermediate mass black hole binaries (IMBHB). We added waveforms modeling the gravitational radiation emitted by IMBHBs to detectors simulated data and searched for the injected signals with the coherent WaveBurst algorithm. The tested binarys parameter space covers non-spinning IMBHBs with source-frame total masses between 50 and 1050 $text{M}_{odot}$ and mass ratios between $1/6$ and 1$,$. We found that advanced detectors could be sensitive to these systems up to a range of a few Gpc. A theoretical model was adopted to estimate the expected observation rates, yielding up to a few tens of events per year. Thus, our results indicate that advanced detectors will have a reasonable chance to collect the first direct evidence for intermediate mass black holes and open a new, intriguing channel for probing the Universe over cosmological scales.
147 - T Adams , D. Buskulic , V. Germain 2015
The multi-band template analysis (MBTA) pipeline is a low-latency coincident analysis pipeline for the detection of gravitational waves (GWs) from compact binary coalescences. MBTA runs with a low computational cost, and can identify candidate GW eve nts online with a sub-minute latency. The low computational running cost of MBTA also makes it useful for data quality studies. Events detected by MBTA online can be used to alert astronomical partners for electromagnetic follow-up. We outline the current status of MBTA and give details of recent pipeline upgrades and validation tests that were performed in preparation for the first advanced detector observing period. The MBTA pipeline is ready for the outset of the advanced detector era and the exciting prospects it will bring.
We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7 [1/$sqrt{{textrm{Hz}}}$]. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of $1.8 times 10^{-25}$. At the low end of our frequency range, 20 Hz, we achieve upper limits of $3.9 times 10^{-24}$. At 55 Hz we can exclude sources with ellipticities greater than $10^{-5}$ within 100 pc of Earth with fiducial value of the principal moment of inertia of $10^{38} textrm{kg m}^2$.
Very low Earth orbits (VLEO), typically classified as orbits below approximately 450 km in altitude, have the potential to provide significant benefits to spacecraft over those that operate in higher altitude orbits. This paper provides a comprehensi ve review and analysis of these benefits to spacecraft operations in VLEO, with parametric investigation of those which apply specifically to Earth observation missions. The most significant benefit for optical imaging systems is that a reduction in orbital altitude improves spatial resolution for a similar payload specification. Alternatively mass and volume savings can be made whilst maintaining a given performance. Similarly, for radar and lidar systems, the signal-to-noise ratio can be improved. Additional benefits include improved geospatial position accuracy, improvements in communications link-budgets, and greater launch vehicle insertion capability. The collision risk with orbital debris and radiation environment can be shown to be improved in lower altitude orbits, whilst compliance with IADC guidelines for spacecraft post-mission lifetime and deorbit is also assisted. Finally, VLEO offers opportunities to exploit novel atmosphere-breathing electric propulsion systems and aerodynamic attitude and orbit control methods. However, key challenges associated with our understanding of the lower thermosphere, aerodynamic drag, the requirement to provide a meaningful orbital lifetime whilst minimising spacecraft mass and complexity, and atomic oxygen erosion still require further research. Given the scope for significant commercial, societal, and environmental impact which can be realised with higher performing Earth observation platforms, renewed research efforts to address the challenges associated with VLEO operations are required.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا