ﻻ يوجد ملخص باللغة العربية
We describe the consistency testing of a new code for gravitational wave signal parameter estimation in known pulsar searches. The code uses an implementation of nested sampling to explore the likelihood volume. Using fake signals and simulated noise we compare this to a previous code that calculated the signal parameter posterior distributions on both a grid and using a crude Markov chain Monte Carlo (MCMC) method. We define a new parameterisation of two orientation angles of neutron stars used in the signal model (the initial phase and polarisation angle), which breaks a degeneracy between them and allows more efficient exploration of those parameters. Finally, we briefly describe potential areas for further study and the uses of this code in the future.
We conduct searches for continuous gravitational waves from seven pulsars, that have not been targeted in continuous wave searches of Advanced LIGO data before. We target emission at exactly twice the rotation frequency of the pulsars and in a small
We present a search for gravitational waves from 221 pulsars with rotation frequencies $gtrsim 10$ Hz. We use advanced LIGO data from its first and second observing runs spanning 2015-2017, which provides the highest-sensitivity gravitational-wave da
We present the result of searches for gravitational waves from 200 pulsars using data from the first observing run of the Advanced LIGO detectors. We find no significant evidence for a gravitational-wave signal from any of these pulsars, but we are a
We present a search for gravitational waves from 116 known millisecond and young pulsars using data from the fifth science run of the LIGO detectors. For this search ephemerides overlapping the run period were obtained for all pulsars using radio and
We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interf