ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical lattice instability versus spin liquid state in a frustrated spin chain system

202   0   0.0 ( 0 )
 نشر من قبل Peter Lemmens
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The low-dimensional s=1/2 compound (NO)[Cu(NO3)3] has recently been suggested to follow the Nersesyan-Tsvelik model of coupled spin chains. Such a system shows unbound spinon excitations and a resonating valence bond ground state due spin frustration. Our Raman scattering study demonstrates phonon anomalies as well as the suppression of a broad magnetic scattering continuum for temperatures below a characteristic temperature, T<T*=100K. We interpret these effects as evidence for a dynamical interplay of spin and lattice degrees of freedom that might lead to a further transition into a dimerized or structurally distorted phase at lower temperatures.



قيم البحث

اقرأ أيضاً

CuAl2O4 is a normal spinel oxide having quantum spin, S=1/2 for Cu2+. It is a rather unique feature that the Cu2+ ions of CuAl2O4 sit at a tetrahedral position, not like the usual octahedral position for many oxides. At low temperatures, it exhibits all the thermodynamic evidence of a quantum spin glass. For example, the polycrystalline CuAl2O4 shows a cusp centered at ~2 K in the low-field dc magnetization data and a clear frequency dependence in the ac magnetic susceptibility while it displays logarithmic relaxation behavior in a time dependence of the magnetization. At the same time, there is a peak at ~2.3 K in the heat capacity, which shifts towards higher temperature with magnetic fields. On the other hand, there is no evidence of new superlattice peaks in the high-resolution neutron powder diffraction data when cooled from 40 to 0.4 K. This implies that there is no long-ranged magnetic order down to 0.4 K, thus confirming a spin glass-like ground state for CuAl2O4. Interestingly, there is no sign of structural distortion either although Cu2+ is a Jahn-Teller active ion. Thus, we claim that an orbital liquid state is the most likely ground state in CuAl2O4. Of further interest, it also exhibits a large frustration parameter, f = Theta_CW/Tm ~67, one of the largest values reported for spinel oxides. Our observations suggest that CuAl2O4 should be a rare example of a frustrated quantum spin glass with a good candidate for an orbital liquid state.
We present a model compound with a spin-1/2 frustrated square lattice, in which three ferromagnetic (F) interactions and one antiferromagnetic (AF) compet. Considering the effective spin-1 formed by the dominant F dimer, this square lattice can be ma pped to a spin-1 spatially anisotropic triangular lattice. The magnetization curve exhibits gapped behavior indicative of a dominant one-dimensional (1D) AF correlation. In the field-induced gapless phase, the specific heat and magnetic susceptibility show a phase transition to an ordered state with 2D characteristics. These results indicate that the spin-1 Haldane state is extended to the 2D system. We demonstrate that the gapped ground state observed in the present spin-1/2 frustrated square lattice originates from the one-dimensionalization caused by frustration.
The spin-nematic phase is an intriguing state of matter that lacks usual long-range dipolar order, yet it exhibits higher multipolar order. This makes its detection extremely difficult and controversial. Recently, nuclear magnetic resonance (NMR) has been proposed as one of the most suitable techniques to confirm its existence. We report a $^{17}$O NMR observation of the reduction of the local magnetization in the polarized state of the frustrated spin-1/2 chain $beta$-TeVO$_4$, which was previously proposed to be a fingerprint of the spin-nematic behavior. However, our detailed study shows that the detected missing fraction of the magnetization, probed by NMR frequency shift, is thermally activated, thus undermining the presence of the spin-nematic phase in the investigated compound. This highlights the importance of careful considerations of temperature-dependent NMR shift that has been overlooked in previous studies of spin nematicity.
Frustration in quantum spin systems promote a variety of novel quantum phases. An important example is the frustrated spin-$1$ model on the square lattice with the nearest-neighbor bilinear ($J_1$) and biquadratic ($K_1$) interactions. We provide str ong evidence for a nematic spin liquid phase in a range of $K_1/J_1$ near the SU(3)-symmetric point ($J_1 = K_1$), based on the linear flavor-wave theory and extensive density matrix renormalization group calculation. This phase displays no spin dipolar or quadrupolar order, preserves translational symmetry but spontaneously breaks $C_4$ lattice rotational symmetry, and possesses fluctuations peaked at the wavevector $(pi, 2pi/3)$. The spin excitation gap drops rapidly with system size and appears to be gapless, and the nematic order is attributed to the dominant $(pi, 2pi/3)$ fluctuations. Our results provide a novel mechanism for electronic nematic order and, more generally, open up a new avenue to explore frustration-induced exotic ground states.
Using inelastic neutron scattering, we have observed a quasi-one-dimensional dispersive magnetic excitation in the frustrated triangular-lattice spin-2 chain oxide Ca3Co2O6. At the lowest temperature (T = 1.5 K), this magnon is characterized by a lar ge zone-center spin gap of ~27 meV, which we attribute to the large single-ion anisotropy, and disperses along the chain direction with a bandwidth of ~3.5 meV. In the directions orthogonal to the chains, no measurable dispersion was found. With increasing temperature, the magnon dispersion shifts towards lower energies, yet persists up to at least 150 K, indicating that the ferromagnetic intrachain correlations survive up to 6 times higher temperatures than the long-range interchain antiferromagnetic order. The magnon dispersion can be well described within the predictions of linear spin-wave theory for a system of weakly coupled ferromagnetic chains with large single-ion anisotropy, enabling the direct quantitative determination of the magnetic exchange and anisotropy parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا