We have investigated the energy loss of hot electrons in metallic graphene by means of GHz noise thermometry at liquid helium temperature. We observe the electronic temperature T / V at low bias in agreement with the heat diffusion to the leads described by the Wiedemann-Franz law. We report on $Tproptosqrt{V}$ behavior at high bias, which corresponds to a T4 dependence of the cooling power. This is the signature of a 2D acoustic phonon cooling mechanism. From a heat equation analysis of the two regimes we extract accurate values of the electron-acoustic phonon coupling constant $Sigma$ in monolayer graphene. Our measurements point to an important effect of lattice disorder in the reduction of $Sigma$, not yet considered by theory. Moreover, our study provides a strong and firm support to the rising field of graphene bolometric detectors.