ترغب بنشر مسار تعليمي؟ اضغط هنا

The source counts of submillimetre galaxies detected at 1.1 mm

136   0   0.0 ( 0 )
 نشر من قبل Kimberly Scott
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The source counts of galaxies discovered at sub-millimetre and millimetre wavelengths provide important information on the evolution of infrared-bright galaxies. We combine the data from six blank-field surveys carried out at 1.1 mm with AzTEC, totalling 1.6 square degrees in area with root-mean-square depths ranging from 0.4 to 1.7 mJy, and derive the strongest constraints to date on the 1.1 mm source counts at flux densities S(1100) = 1-12 mJy. Using additional data from the AzTEC Cluster Environment Survey to extend the counts to S(1100) ~ 20 mJy, we see tentative evidence for an enhancement relative to the exponential drop in the counts at S(1100) ~ 13 mJy and a smooth connection to the bright source counts at >20 mJy measured by the South Pole Telescope; this excess may be due to strong lensing effects. We compare these counts to predictions from several semi-analytical and phenomenological models and find that for most the agreement is quite good at flux densities > 4 mJy; however, we find significant discrepancies (>3sigma) between the models and the observed 1.1 mm counts at lower flux densities, and none of them are consistent with the observed turnover in the Euclidean-normalised counts at S(1100) < 2 mJy. Our new results therefore may require modifications to existing evolutionary models for low luminosity galaxies. Alternatively, the discrepancy between the measured counts at the faint end and predictions from phenomenological models could arise from limited knowledge of the spectral energy distributions of faint galaxies in the local Universe.



قيم البحث

اقرأ أيضاً

We present results of a 1.1 mm deep survey of the AKARI Deep Field South (ADF-S) with AzTEC mounted on the Atacama Submillimetre Telescope Experiment (ASTE). We obtained a map of 0.25 sq. deg area with an rms noise level of 0.32-0.71 mJy. This is one of the deepest and widest maps thus far at millimetre and submillimetre wavelengths. We uncovered 198 sources with a significance of 3.5-15.6 sigma, providing the largest catalog of 1.1 mm sources in a contiguous region. Most of the sources are not detected in the far-infrared bands of the AKARI satellite, suggesting that they are mostly at z ~ 1.5 given the detection limits. We constructed differential and cumulative number counts in the ADF-S, the Subaru/XMM Newton Deep Field (SXDF), and the SSA 22 field surveyed by AzTEC/ASTE, which provide currently the tightest constraints on the faint end. The integration of the best-fit number counts in the ADF-S find that the contribution of 1.1 mm sources with fluxes >=1 mJy to the cosmic infrared background (CIB) at 1.1 mm is 12-16%, suggesting that the large fraction of the CIB originates from faint sources of which the number counts are not yet constrained. We estimate the cosmic star-formation rate density contributed by 1.1 mm sources with >=1 mJy using the best-fit number counts in the ADF-S and find that it is lower by about a factor of 5-10 compared to those derived from UV/optically-selected galaxies at z ~ 2-3. The fraction of stellar mass of the present-day universe produced by 1.1 mm sources with >=1 mJy at z >= 1 is ~20%, calculated by the time integration of the star-formation rate density. If we consider the recycled fraction of >0.4, which is the fraction of materials forming stars returned to the interstellar medium, the fraction of stellar mass produced by 1.1 mm sources decrease to <~10%.
Sub/millimiter observations of dusty star-forming galaxies with ALMA have shown that the dust continuum emission occurs generally in compact regions smaller than the stellar distribution. However, it remains to be understood how systematic these find ings are, as they often lack of homogeneity in the sample selection, target discontinuous areas with inhomogeneous sensitivities, and suffer from modest $uv$-coverage coming from single array configurations. GOODS-ALMA is a 1.1 mm galaxy survey over a continuous area of 72.42 arcmin$^2$ at a homogeneous sensitivity. In this version 2.0, we present a new low-resolution dataset and its combination with the previous high-resolution dataset from Franco et al. (2018), improving the $uv$-coverage and sensitivity reaching an average of $sigma = 68.4$ $mu$Jy beam$^{-1}$. A total of 88 galaxies are detected in a blind search (compared to 35 in the high-resolution dataset alone), 50% at $rm{S/N_{peak}} geq 5$ and 50% at $3.5 leq rm{S/N_{peak}} leq 5$ aided by priors. Among them, 13/88 are optically dark/faint sources ($H$ or $K$-band dropouts). The sample dust continuum sizes at 1.1 mm are generally compact, with a median effective radius of $R_{rm{e}} = 010 pm 005$ (physical size of $R_{rm{e}} = 0.73 pm 0.29$ kpc, at the redshift of each source). Dust continuum sizes evolve with redshift and stellar mass resembling the trends of the stellar sizes measured at optical wavelengths, albeit a lower normalization compared to those of late-type galaxies. We conclude that for sources with flux densities $S_{rm{1.1mm}} > 1$ mJy compact dust continuum emission at 1.1 mm prevails, and sizes as extended as typical star-forming stellar disks are rare. $S_{rm{1.1mm}} < 1$ mJy sources appear slightly more extended at 1.1 mm, although still generally compact below the sizes of typical star-forming stellar disks.
We present a submillimetre survey of seven high-z galaxy clusters (0.64<z<1.0) using the Submillimetre Common-User Bolometer Array (SCUBA) at 850 and 450 um. The targets, of similar richness and redshift, are selected from the Red-sequence Cluster Su rvey (RCS). We use this sample to investigate the apparent excess of submillimetre source counts in the direction of cluster fields compared to blank fields. The sample consists of three galaxy clusters that exhibit multiple optical arcs due to strong gravitational lensing, and a control group of four clusters with no apparent strong lensing. A tentative excess of 2.7-sigma is seen in the number density of submillimetre luminous galaxies (SMGs) within the lensing cluster fields compared to that in the control group. Ancillary observations at radio, mid-infrared, optical, and X-ray wavelengths allow for the identification of counterparts to many of the SMGs. Utilizing photometric redshifts, we conclude that at least three of the galaxies within the lensing fields have redshifts consistent with the clusters and implied infrared luminosities of ~10^12 Lsol. The existence of SMG cluster members may therefore be boosting source counts in the lensing cluster fields, which might be an effect of the dynamical state of those clusters. However, we find that the removal of potential cluster members from the counts analysis does not entirely eliminate the difference between the cluster samples. We also investigate possible occurrences of lensing between background SMGs and lower-z optical galaxies, though further observations are required to make any conclusive claims. Although the excess counts between the two cluster samples have not been unambiguously accounted for, these results warrant caution for interpreting submillimetre source counts in cluster fields and point source contamination for Sunyaev-Zeldovich surveys. [Abridged]
131 - Alexander Karim 2012
We report the first counts of faint submillimetre galaxies (SMG) in the 870-um band derived from arcsecond resolution observations with the Atacama Large Millimeter Array (ALMA). We have used ALMA to map a sample of 122 870-um-selected submillimetre sources drawn from the (0.5x0.5)deg^2 LABOCA Extended Chandra Deep Field South Submillimetre Survey (LESS). These ALMA maps have an average depth of sigma(870um)~0.4mJy, some ~3x deeper than the original LABOCA survey and critically the angular resolution is more than an order of magnitude higher, FWHM of ~1.5 compared to ~19 for the LABOCA discovery map. This combination of sensitivity and resolution allows us to precisely pin-point the SMGs contributing to the submillimetre sources from the LABOCA map, free from the effects of confusion. We show that our ALMA-derived SMG counts broadly agree with the submillimetre source counts from previous, lower-resolution single-dish surveys, demonstrating that the bulk of the submillimetre sources are not caused by blending of unresolved SMGs. The difficulty which well-constrained theoretical models have in reproducing the high-surface densities of SMGs, thus remains. However, our observations do show that all of the very brightest sources in the LESS sample, S(870um)>12mJy, comprise emission from multiple, fainter SMGs, each with 870-um fluxes of <9mJy. This implies a natural limit to the star-formation rate in SMGs of <10^3 M_Sun/yr, which in turn suggests that the space densities of z>1 galaxies with gas masses in excess of ~5x10^10 M_Sun is <10^-5 Mpc^-3. We also discuss the influence of this blending on the identification and characterisation of the SMG counterparts to these bright submillimetre sources and suggest that it may be responsible for previous claims that they lie at higher redshifts than fainter SMGs.
We report 1.1 mm number counts revealed with the Atacama Large Millimeter/submillimeter Array (ALMA) in the Subaru/XMM-Newton Deep Survey Field (SXDF). The advent of ALMA enables us to reveal millimeter-wavelength number counts down to the faint end without source confusion. However, previous studies are based on the ensemble of serendipitously-detected sources in fields originally targeting different sources and could be biased due to the clustering of sources around the targets. We derive number counts in the flux range of 0.2-2 mJy by using 23 (>=4sigma) sources detected in a continuous 2.0 arcmin$^2$ area of the SXDF. The number counts are consistent with previous results within errors, suggesting that the counts derived from serendipitously-detected sources are not significantly biased, although there could be field-to-field variation due to the small survey area. By using the best-fit function of the number counts, we find that ~40% of the extragalactic background light at 1.1 mm is resolved at S(1.1mm) > 0.2 mJy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا