ترغب بنشر مسار تعليمي؟ اضغط هنا

Lax-Phillips scattering theory for PT-symmetric rho-perturbed operators

285   0   0.0 ( 0 )
 نشر من قبل Sergii Kuzhel
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The S-matrices corresponding to PT-symmetric rho-perturbed operators are defined and calculated by means of an approach based on an operator-theoretical interpretation of the Lax-Phillips scattering theory.



قيم البحث

اقرأ أيضاً

Generalized PT-symmetric operators acting an a Hilbert space $mathfrak{H}$ are defined and investigated. The case of PT-symmetric extensions of a symmetric operator $S$ is investigated in detail. The possible application of the Lax-Phillips scatterin g methods to the investigation of PT-symmetric operators is illustrated by considering the case of 0-perturbed operators.
This paper reports the results of an ongoing in-depth analysis of the classical trajectories of the class of non-Hermitian $PT$-symmetric Hamiltonians $H=p^2+ x^2(ix)^varepsilon$ ($varepsilongeq0$). A variety of phenomena, heretofore overlooked, have been discovered such as the existence of infinitely many separatrix trajectories, sequences of critical initial values associated with limiting classical orbits, regions of broken $PT$-symmetric classical trajectories, and a remarkable topological transition at $varepsilon=2$. This investigation is a work in progress and it is not complete; many features of complex trajectories are still under study.
In the contest of open quantum systems, we study a class of Kraus operators whose definition relies on the defining representation of the symmetric groups. We analyze the induced orbits as well as the limit set and the degenerate cases.
99 - Stephen P. Shipman 2017
This work constructs a class of non-symmetric periodic Schrodinger operators on metric graphs (quantum graphs) whose Fermi, or Floquet, surface is reducible. The Floquet surface at an energy level is an algebraic set that describes all complex wave v ectors admissible by the periodic operator at the given energy. The graphs in this study are obtained by coupling two identical copies of a periodic quantum graph by edges to form a bilayer graph. Reducibility of the Floquet surface for all energies ensues when the coupling edges have potentials belonging to the same asymmetry class. The notion of asymmetry class is defined in this article through the introduction of an entire spectral A-function $a(lambda)$ associated with a potential--two potentials belong to the same asymmetry class if their A-functions are identical. Symmetric potentials correspond to $a(lambda)equiv0$. If the potentials of the connecting edges belong to different asymmetry classes, then typically the Floquet surface is not reducible. An exception occurs when two copies of certain bipartite graphs are coupled; the Floquet surface in this case is always reducible. This includes AA-stacked bilayer graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا