ترغب بنشر مسار تعليمي؟ اضغط هنا

The Distribution of Young Stars and Metals in Simulated Cosmological Disk Galaxies

108   0   0.0 ( 0 )
 نشر من قبل Brad Gibson
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the distribution of young stars associated with the spiral arms of a simulated L* cosmological disk galaxy. We find age patterns orthogonal to the arms which are not inconsistent with the predictions of classical density wave theory, a view further supported by recent observations of face-on Grand Design spirals such as M51. The distribution of metals within a simulated ~0.1L* disk is presented, reinforcing the link between star formation, the age-metallicity relation, and the metallicity distribution function.



قيم البحث

اقرأ أيضاً

We examine the chemical properties of 5 cosmological hydrodynamical simulations of an M33-like disc galaxy which have been shown to be consistent with the morphological characteristics and bulk scaling relations expected of late-type spirals. These s imulations are part of the Making Galaxies In a Cosmological Context (MaGICC) Project, in which stellar feedback is tuned to match the stellar mass -- halo mass relationship. Each realisation employed identical initial conditions and assembly histories, but differed from one another in their underlying baryonic physics prescriptions, including (a) the efficiency with which each supernova energy couples to the ISM, (b) the impact of feedback associated with massive star radiation pressure, (c) the role of the minimum shut-off time for radiative cooling of Type II SNe remnants, (d) the treatment of metal diffusion, and (e) varying the IMF. Our analysis focusses on the resulting stellar metallicity distribution functions (MDFs) in each simulated (analogous) `solar neighbourhood and central `bulge region. We compare the simulated MDFs skewness, kurtosis, and dispersion (inter-quartile, inter-decile, inter-centile, and inter-tenth-percentile regions) with that of the empirical solar neighbourhood MDF and Local Group dwarfs. We find that the MDFs of the simulated discs are more negatively skewed, with higher kurtosis, than those observed locally. We can trace this difference to the simulations tight and correlated age-metallicity relations (compared with that of the Milky Way), suggesting that these relations within `dwarf discs might be steeper than in L* discs and/or the degree of stellar orbital re-distribution and migration inferred locally has not been captured in their entirety, at the resolution of our simulations. The important role of metal diffusion in ameliorating the over-production of extremely metal-poor stars is highlighted.
Using 22 hydrodynamical simulated galaxies in a LCDM cosmological context we recover not only the observed baryonic Tully-Fisher relation, but also the observed mass discrepancy--acceleration relation, which reflects the distribution of the main comp onents of the galaxies throughout their disks. This implies that the simulations, which span the range 52 < V$_{rm flat}$ < 222 km/s where V$_{rm flat}$ is the circular velocity at the flat part of the rotation curve, and match galaxy scaling relations, are able to recover the observed relations between the distributions of stars, gas and dark matter over the radial range for which we have observational rotation curve data. Furthermore, we explicitly match the observed baryonic to halo mass relation for the first time with simulated galaxies. We discuss our results in the context of the baryon cycle that is inherent in these simulations, and with regards to the effect of baryonic processes on the distribution of dark matter.
We highlight two research strands related to our ongoing chemodynamical Galactic Archaeology efforts: (i) the spatio-temporal infall rate of gas onto the disk, drawing analogies with the infall behaviour imposed by classical galactic chemical evoluti on models of inside-out disk growth; (ii) the radial age gradient predicted by spectrophometric models of disk galaxies. In relation to (i), at low-redshift, we find that half of the infall onto the disk is gas associated with the corona, while half can be associated with cooler gas streams; we also find that gas enters the disk preferentially orthogonal to the system, rather than in-plane. In relation to (ii), we recover age gradient troughs/inflections consistent with those observed in nature, without recourse to radial migrations.
611 - A. Rahimi 2009
We analyse the kinematics and chemistry of the bulge stars of two simulated disc galaxies using our chemodynamical galaxy evolution code GCD+. First we compare stars that are born inside the galaxy with those that are born outside the galaxy and are accreted into the centre of the galaxy. Stars that originate outside of the bulge are accreted into it early in its formation within 3 Gyrs so that these stars have high [alpha/Fe] as well as having a high total energy reflecting their accretion to the centre of the galaxy. Therefore, higher total energy is a good indicator for finding accreted stars. The bulges of the simulated galaxies formed through multiple mergers separated by about a Gyr. Since [alpha/Fe] is sensitive to the first few Gyrs of star formation history, stars that formed during mergers at different epochs show different [alpha/Fe]. We show that the [Mg/Fe] against star formation time relation can be very useful to identify a multiple merger bulge formation scenario, provided there is sufficiently good age information available. Our simulations also show that stars formed during one of the merger events retain a systematically prograde rotation at the final time. This demonstrates that the orbit of the ancient merger that helped to form the bulge could still remain in the kinematics of bulge stars.
199 - James W. Trayford 2015
We calculate the colours and luminosities of redshift z = 0.1 galaxies from the EAGLE simulation suite using the GALAXEV population synthesis models. We take into account obscuration by dust in birth clouds and diffuse ISM using a two-component scree n model, following the prescription of Charlot and Fall. We compare models in which the dust optical depth is constant to models where it depends on gas metallicity, gas fraction and orientation. The colours of EAGLE galaxies for the more sophisticated models are in broad agreement with those of observed galaxies. In particular, EAGLE produces a red sequence of passive galaxies and a blue cloud of star forming galaxies, with approximately the correct fraction of galaxies in each population and with g-r colours within 0.1 magnitudes of those observed. Luminosity functions from UV to NIR wavelengths differ from observations at a level comparable to systematic shifts resulting from a choice between Petrosian and Kron photometric apertures. Despite the generally good agreement there are clear discrepancies with observations. The blue cloud of EAGLE galaxies extends to somewhat higher luminosities than in the data, consistent with the modest underestimate of the passive fraction in massive EAGLE galaxies. There is also a moderate excess of bright blue galaxies compared to observations. The overall level of agreement with the observed colour distribution suggests that EAGLE galaxies at z = 0.1 have ages, metallicities and levels of obscuration that are comparable to those of observed galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا