ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum discord as resource for remote state preparation

240   0   0.0 ( 0 )
 نشر من قبل Borivoje Dakic
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum entanglement is widely recognized as one of the key resources for the advantages of quantum information processing, including universal quantum computation, reduction of communication complexity or secret key distribution. However, computational models have been discovered, which consume very little or no entanglement and still can efficiently solve certain problems thought to be classically intractable. The existence of these models suggests that separable or weakly entangled states could be extremely useful tools for quantum information processing as they are much easier to prepare and control even in dissipative environments. It has been proposed that a requirement for useful quantum states is the generation of so-called quantum discord, a measure of non-classical correlations that includes entanglement as a subset. Although a link between quantum discord and few quantum information tasks has been studied, its role in computation speed-up is still open and its operational interpretation remains restricted to only few somewhat contrived situations. Here we show that quantum discord is the optimal resource for the remote quantum state preparation, a variant of the quantum teleportation protocol. Using photonic quantum systems, we explicitly show that the geometric measure of quantum discord is related to the fidelity of this task, which provides an operational meaning. Moreover, we demonstrate that separable states with non-zero quantum discord can outperform entangled states. Therefore, the role of quantum discord might provide fundamental insights for resource-efficient quantum information processing.



قيم البحث

اقرأ أيضاً

Quantum discord and quantum entanglement are resources in some quantum information processing (QIP) models. However, in recent years, the evidence that separable states or classically correlated states can also accomplish QIP is demonstrated. It prov ides a useful tool since such states are easier to prepare. Quantum coherence is a measure of non-classical correlation, containing entanglement and discord as a subset. Nowadays, it is of interest whether quantum coherence can act as a resource in QIP independently or not, without the help from quantum discord or entanglement. In this paper, we show that quantum correlated coherence(a measure of coherence with local parts removed) is also a kind of quantum resource. It is the sufficient and necessary resource for quantum remote state preparation and quantum teleportation.
In recent years, exploring the possible use of separable states as resource for achieving quantum information processing(QIP) tasks has been gaining increasing significance. In this context, a particularly important demonstration has been that non-va nishing discord is the necessary condition for the separable states to be used as resource for remotely preparing any arbitrary pure target state [Nature Physics $8$, $666$ $(2012)$]. The present work stems from our observation that not only resource states with same discord can imply different efficiencies (in terms of average fidelity) of the remote state preparation (RSP) protocol, but also states with higher discord can imply lower RSP efficiency. This, therefore, necessitates identification of the relevant feature of quantum correlations which can appropriately quantify effectiveness of the resource state for the RSP protocol. To this end, for the two-qubit Bell-diagonal states, we show that an appropriate measure of simultaneous correlations in three mutually unbiased bases can serve to quantify usefulness of the resource for the RSP task using entangled as well as separable states, including non-discordant states as resource. In particular, it is revealed that zero-discord states having such non-vanishing measure can be useful for remotely preparing a subset of pure target states. Thus, this work shows that, using separable states, an effective resource for QIP tasks such as RSP can be provided by simultaneous correlations in mutually unbiased bases.
We demonstrate an experimental realization of remote state preparation via the quantum teleportation algorithm, using an entangled photon pair in the polarization degree of freedom as the quantum resource. The input state is encoded on the path of on e of the photons from the pair. The improved experimental scheme allows us to control the preparation and teleportation of a state over the entire Bloch sphere with a resolution of the degree of mixture given by the coherence length of the photon pair. Both the preparation of the input state and the implementation of the quantum gates are performed in a pair of chained displaced Sagnac interferometers, which contribute to the overall robustness of the setup. An average fidelity above 0.9 is obtained for the remote state preparation process. This scheme allows for a prepared state to be transmitted on every repetition of the experiment, thus giving an intrinsic success probability of 1.
Quantum communication protocols based on nonclassical correlations can be more efficient than known classical methods and offer intrinsic security over direct state transfer. In particular, remote state preparation aims at the creation of a desired a nd known quantum state at a remote location using classical communication and quantum entanglement. We present an experimental realization of deterministic continuous-variable remote state preparation in the microwave regime over a distance of 35 cm. By employing propagating two-mode squeezed microwave states and feedforward, we achieve the remote preparation of squeezed states with up to 1.6 dB of squeezing below the vacuum level. We quantify security in our implementation using the concept of the one-time pad. Our results represent a significant step towards microwave quantum networks between superconducting circuits.
78 - Arun K. Pati 2002
Quantum information theory has revolutionized the way in which information is processed using quantum resources such as entangled states, local operations and classical communications. Two important protocols in quantum communications are quantum tel eportation and remote state preparation. In quantum teleportation neither the sender nor the receiver know the identity of a state. In remote state preparation the sender knows the state which is to be remotely prepared without ever physically sending the object or the complete classical description of it. Using one unit of entanglement and one classical bit Alice can remotely prepare a photon (from special ensemble) of her choice at Bobs laboratory. In remote state measurement Alice asks Bob to simulate any single particle measurement statistics on an arbitrary photon. In this talk we will present these ideas and discuss the latest developments and future open problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا