ﻻ يوجد ملخص باللغة العربية
We study the electromagnetic transmission $T$ through one-dimensional (1D) photonic heterostructures whose random layer thicknesses follow a long-tailed distribution --Levy-type distribution. Based on recent predictions made for 1D coherent transport with Levy-type disorder, we show numerically that for a system of length $L$ (i) the average $<-ln T> propto L^alpha$ for $0<alpha<1$, while $<-ln T> propto L$ for $1lealpha<2$, $alpha$ being the exponent of the power-law decay of the layer-thickness probability distribution; and (ii) the transmission distribution $P(T)$ is independent of the angle of incidence and frequency of the electromagnetic wave, but it is fully determined by the values of $alpha$ and $<ln T>$.
Structures with heavy-tailed distributions of disorder occur widely in nature. The evolution of such systems, as in foraging for food or the occurrence of earthquakes is generally analyzed in terms of an incoherent series of events. But the study of
We demonstrate that optical transmission matrices (TM) of disordered complex media provide a powerful tool to extract the photonic interaction strength, independent of surface effects. We measure TM of strongly scattering GaP nanowires and plot the s
We report experimental measurement of critical disorder in weakly disordered, one-dimensional photonic crystals. We measure the configurationally-averaged transmission at various degrees of weak disorder. We extract the density of states (DoS) after
We present theoretical and experimental results of Levy flights of light originating from a random walk of photons in a hot atomic vapor. In contrast to systems with quenched disorder, this system does not present any correlations between the positio
We consider heat transport in one-dimensional harmonic chains attached at its ends to Langevin heat baths. The harmonic chain has mass impurities where the separation $d$ between any two successive impurities is randomly distributed according to a po