ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of nuclear recoils in liquid argon with monoenergetic neutrons

117   0   0.0 ( 0 )
 نشر من قبل Christian Regenfus
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For the development of liquid argon dark matter detectors we assembled a setup in the laboratory to scatter neutrons on a small liquid argon target. The neutrons are produced mono-energetically (E_kin=2.45 MeV) by nuclear fusion in a deuterium plasma and are collimated onto a 3 liquid argon cell operating in single-phase mode (zero electric field). Organic liquid scintillators are used to tag scattered neutrons and to provide a time-of-flight measurement. The setup is designed to study light pulse shapes and scintillation yields from nuclear and electronic recoils as well as from {alpha}-particles at working points relevant to dark matter searches. Liquid argon offers the possibility to scrutinise scintillation yields in noble liquids with respect to the populations of the two fundamental excimer states. Here we present experimental methods and first results from recent data towards such studies.



قيم البحث

اقرأ أيضاً

We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V/cm, 154 V/cm and 366 V/cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Cha in Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two lower fields are in agreement with those from literature; additional measurements at a higher field of 366 V/cm are presented. The electronic and nuclear recoil discrimination as well as its dependence on the drift field and photon detection efficiency are investigated at these low energies. The results provide new measurements in the energy region of interest for dark matter searches using liquid xenon.
XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S1) and ionization signa l (S2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield leff and the absolute ionization yield Q_y, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of leff is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our leff measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is 4 keV. A knowledge of the ionization yield Qy is necessary to establish the trigger threshold of the experiment. The ionization yield Qy is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.
Nuclear emulsion is a well-known detector type proposed also for the directional detection of dark matter. In this paper, we study one of the most important properties of direction-sensitive detectors: the preservation by nuclear recoils of the direc tion of impinging dark matter particles. For nuclear emulsion detectors, it is the first detailed study where a realistic nuclear recoil energy distribution with all possible recoil atom types is exploited. Moreover, for the first time we study the granularity effect on the emulsion detector directional performance. As well as we compare nuclear emulsion with other directional detectors: in terms of direction preservation nuclear emulsion outperforms the other detectors for WIMP masses above 100 GeV/c$^2$.
This Letter details a measurement of the ionization yield ($Q_y$) of 6.7 keV $^{40}Ar$ atoms stopping in a liquid argon detector. The $Q_y$ of 3.6-6.3 detected $e^{-}/mbox{keV}$, for applied electric fields in the range 240--2130 V/cm, is encouraging for the use of this detector medium to search for the signals from hypothetical dark matter particle interactions and from coherent elastic neutrino nucleus scattering. A significant dependence of $Q_y$ on the applied electric field is observed and explained in the context of ion recombination.
We report measurements of the charged daughter fraction of $^{218}$Po as a result of the $^{222}$Rn alpha decay, and the mobility of $^{218}$Po$^+$ ions, using radon-polonium coincidences from the $^{238}$U chain identified in 532 live-days of DarkSi de-50 WIMP-search data. The fraction of $^{218}$Po that is charged is found to be 0.37$pm$0.03 and the mobility of $^{218}$Po$^+$ is (8.6$pm$0.1)$times$10$^{-4}$$frac{text{cm}^2}{text{Vs}}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا