ترغب بنشر مسار تعليمي؟ اضغط هنا

A 25 Gb/s Silicon Photonics Platform

194   0   0.0 ( 0 )
 نشر من قبل Thomas Baehr-Jones
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Silicon has attracted attention as an inexpensive and scalable material system for photonic-electronic, system-on-chip development. For this, a platform with both photodetectors and modulators working at high speeds, with excellent cross-wafer uniformity, is needed. We demonstrate an optical-lithography, wafer-scale photonics platform with 25 Gb/s operation. We also demonstrate modulation with an ultra-low drive voltage of 1 Vpp at 25 Gb/s. We demonstrate attractive cross-wafer uniformity, and provide detailed information about the device geometry. Our platform is available to the community as part of a photonics shuttle service.



قيم البحث

اقرأ أيضاً

Accurate 3D imaging is essential for machines to map and interact with the physical world. While numerous 3D imaging technologies exist, each addressing niche applications with varying degrees of success, none have achieved the breadth of applicabili ty and impact that digital image sensors have achieved in the 2D imaging world. A large-scale two-dimensional array of coherent detector pixels operating as a light detection and ranging (LiDAR) system could serve as a universal 3D imaging platform. Such a system would offer high depth accuracy and immunity to interference from sunlight, as well as the ability to directly measure the velocity of moving objects. However, due to difficulties in providing electrical and photonic connections to every pixel, previous systems have been restricted to fewer than 20 pixels. Here, we demonstrate the first large-scale coherent detector array consisting of 512 ($32 times 16$) pixels, and its operation in a 3D imaging system. Leveraging recent advances in the monolithic integration of photonic and electronic circuits, a dense array of optical heterodyne detectors is combined with an integrated electronic readout architecture, enabling straightforward scaling to arbitrarily large arrays. Meanwhile, two-axis solid-state beam steering eliminates any tradeoff between field of view and range. Operating at the quantum noise limit, our system achieves an accuracy of $3.1~mathrm{mm}$ at a distance of 75 metres using only $4~mathrm{mW}$ of light, an order of magnitude more accurate than existing solid-state systems at such ranges. Future reductions of pixel size using state-of-the-art components could yield resolutions in excess of 20 megapixels for arrays the size of a consumer camera sensor. This result paves the way for the development and proliferation of low cost, compact, and high performance 3D imaging cameras.
Nonlinear optics is an increasingly important field for scientific and technological applications, owing to its relevance and potential for optical and optoelectronic technologies. Currently, there is an active search for suitable nonlinear material systems with efficient conversion and small material footprint. Ideally, the material system should allow for chip-integration and room-temperature operation. Two-dimensional materials are highly interesting in this regard. Particularly promising is graphene, which has demonstrated an exceptionally large nonlinearity in the terahertz regime. Yet, the light-matter interaction length in two-dimensional materials is inherently minimal, thus limiting the overall nonlinear-optical conversion efficiency. Here we overcome this challenge using a metamaterial platform that combines graphene with a photonic grating structure providing field enhancement. We measure terahertz third-harmonic generation in this metamaterial and obtain an effective third-order nonlinear susceptibility with a magnitude as large as 3$cdot$10$^{-8}$m$^2$/V$^2$, or 21 esu, for a fundamental frequency of 0.7 THz. This nonlinearity is 50 times larger than what we obtain for graphene without grating. Such an enhancement corresponds to third-harmonic signal with an intensity that is three orders of magnitude larger due to the grating. Moreover, we demonstrate a field conversion efficiency for the third harmonic of up to $sim$1% using a moderate field strength of $sim$30 kV/cm. Finally we show that harmonics beyond the third are enhanced even more strongly, allowing us to observe signatures of up to the 9$^{rm th}$ harmonic. Grating-graphene metamaterials thus constitute an outstanding platform for commercially viable, CMOS compatible, room temperature, chip-integrated, THz nonlinear conversion applications.
We demonstrate the first buried optical waveguides in diamond using focused femtosecond laser pulses. The properties of nitrogen vacancy centers are preserved in the waveguides, making them promising for diamond-based magnetometers or quantum information systems.
We demonstrated sub-wavelength (~111 nm diameter) single nanowire (NW) continuous wave (CW) lasers on silicon photonic crystal in the telecom-band with direct modulation at 10 Gb/s by optical pumping at cryogenic temperatures. To estimate the small s ignal response and pseudo-random bit sequence (PRBS) modulation of our CW lasers, we employed a new signal detection technique that employs a superconducting single photon detector and a time-correlated single photon counting module. The results showed that our NW laser was unambiguously modulated at above 10 Gb/s and an open eye pattern was obtained. This is the first demonstration of a telecom-band CW NW laser with high-speed PRBS modulation.
On-chip optical interconnect has been widely accepted as a promising technology to realize future large-scale multiprocessors. Mode-division multiplexing (MDM) provides a new degree of freedom for optical interconnects to dramatically increase the li nk capacity. Present on-chip multimode devices are based on traditional wave-optics. Although large amount of computation and optimization are adopted to support more modes, mode-independent manipulation is still hard to be achieved due to severe mode dispersion. Here, we propose a universal solution to standardize the design of fundamental multimode building blocks, by introducing a geometrical-optics-like concept adopting waveguide width larger than the working wavelength. The proposed solution can tackle a group of modes at the same time with very simple processes, avoiding demultiplexing procedure and ensuring compact footprint. Compare to conventional schemes, it is scalable to larger mode channels without increasing the complexity and whole footprint. As a proof of concept, we demonstrate a set of multimode building blocks including crossing, bend, coupler and switches. Low losses of multimode waveguide crossing and bend are achieved, as well as ultra-low power consumption of the multimode switch is realized since it enables reconfigurable routing for a group of modes simultaneously. Our work promotes the multimode photonics research and makes the MDM technique more practical.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا