ﻻ يوجد ملخص باللغة العربية
This paper introduces a new and ubiquitous framework for establishing achievability results in emph{network information theory} (NIT) problems. The framework uses random binning arguments and is based on a duality between channel and source coding problems. {Further,} the framework uses pmf approximation arguments instead of counting and typicality. This allows for proving coordination and emph{strong} secrecy problems where certain statistical conditions on the distribution of random variables need to be satisfied. These statistical conditions include independence between messages and eavesdroppers observations in secrecy problems and closeness to a certain distribution (usually, i.i.d. distribution) in coordination problems. One important feature of the framework is to enable one {to} add an eavesdropper and obtain a result on the secrecy rates for free. We make a case for generality of the framework by studying examples in the variety of settings containing channel coding, lossy source coding, joint source-channel coding, coordination, strong secrecy, feedback and relaying. In particular, by investigating the framework for the lossy source coding problem over broadcast channel, it is shown that the new framework provides a simple alternative scheme to emph{hybrid} coding scheme. Also, new results on secrecy rate region (under strong secrecy criterion) of wiretap broadcast channel and wiretap relay channel are derived. In a set of accompanied papers, we have shown the usefulness of the framework to establish achievability results for coordination problems including interactive channel simulation, coordination via relay and channel simulation via another channel.
In this paper we develop a finite blocklength version of the Output Statistics of Random Binning (OSRB) framework. The framework is shown to be optimal in the point-to-point case. New second order regions for broadcast channel and wiretap channel with strong secrecy criterion are derived.
We study a hypothesis testing problem in which data is compressed distributively and sent to a detector that seeks to decide between two possible distributions for the data. The aim is to characterize all achievable encoding rates and exponents of th
Integer-forcing source coding has been proposed as a low-complexity method for compression of distributed correlated Gaussian sources. In this scheme, each encoder quantizes its observation using the same fine lattice and reduces the result modulo a
Tree detection techniques are often used to reduce the complexity of a posteriori probability (APP) detection in high dimensional multi-antenna wireless communication systems. In this paper, we introduce an efficient soft-input soft-output tree detec
This paper proposes a novel technique to prove a one-shot version of achievability results in network information theory. The technique is not based on covering and packing lemmas. In this technique, we use an stochastic encoder and decoder with a pa