ترغب بنشر مسار تعليمي؟ اضغط هنا

Achievability proof via output statistics of random binning

225   0   0.0 ( 0 )
 نشر من قبل Mohammad Hossein Yassaee
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper introduces a new and ubiquitous framework for establishing achievability results in emph{network information theory} (NIT) problems. The framework uses random binning arguments and is based on a duality between channel and source coding problems. {Further,} the framework uses pmf approximation arguments instead of counting and typicality. This allows for proving coordination and emph{strong} secrecy problems where certain statistical conditions on the distribution of random variables need to be satisfied. These statistical conditions include independence between messages and eavesdroppers observations in secrecy problems and closeness to a certain distribution (usually, i.i.d. distribution) in coordination problems. One important feature of the framework is to enable one {to} add an eavesdropper and obtain a result on the secrecy rates for free. We make a case for generality of the framework by studying examples in the variety of settings containing channel coding, lossy source coding, joint source-channel coding, coordination, strong secrecy, feedback and relaying. In particular, by investigating the framework for the lossy source coding problem over broadcast channel, it is shown that the new framework provides a simple alternative scheme to emph{hybrid} coding scheme. Also, new results on secrecy rate region (under strong secrecy criterion) of wiretap broadcast channel and wiretap relay channel are derived. In a set of accompanied papers, we have shown the usefulness of the framework to establish achievability results for coordination problems including interactive channel simulation, coordination via relay and channel simulation via another channel.



قيم البحث

اقرأ أيضاً

In this paper we develop a finite blocklength version of the Output Statistics of Random Binning (OSRB) framework. The framework is shown to be optimal in the point-to-point case. New second order regions for broadcast channel and wiretap channel with strong secrecy criterion are derived.
We study a hypothesis testing problem in which data is compressed distributively and sent to a detector that seeks to decide between two possible distributions for the data. The aim is to characterize all achievable encoding rates and exponents of th e type 2 error probability when the type 1 error probability is at most a fixed value. For related problems in distributed source coding, schemes based on random binning perform well and often optimal. For distributed hypothesis testing, however, the use of binning is hindered by the fact that the overall error probability may be dominated by errors in binning process. We show that despite this complication, binning is optimal for a class of problems in which the goal is to test against conditional independence. We then use this optimality result to give an outer bound for a more general class of instances of the problem.
213 - Elad Domanovitz , Uri Erez 2017
Integer-forcing source coding has been proposed as a low-complexity method for compression of distributed correlated Gaussian sources. In this scheme, each encoder quantizes its observation using the same fine lattice and reduces the result modulo a coarse lattice. Rather than directly recovering the individual quantized signals, the decoder first recovers a full-rank set of judiciously chosen integer linear combinations of the quantized signals, and then inverts it. It has been observed that the method works very well for most but not all source covariance matrices. The present work quantifies the measure of bad covariance matrices by studying the probability that integer-forcing source coding fails as a function of the allocated rate, %in excess of the %Berger-Tung benchmark, where the probability is with respect to a random orthonormal transformation that is applied to the sources prior to quantization. For the important case where the signals to be compressed correspond to the antenna inputs of relays in an i.i.d. Rayleigh fading environment, this orthonormal transformation can be viewed as being performed by nature. Hence, the results provide performance guarantees for distributed source coding via integer forcing in this scenario.
Tree detection techniques are often used to reduce the complexity of a posteriori probability (APP) detection in high dimensional multi-antenna wireless communication systems. In this paper, we introduce an efficient soft-input soft-output tree detec tion algorithm that employs a new type of look-ahead path metric in the computation of its branch pruning (or sorting). While conventional path metrics depend only on symbols on a visited path, the new path metric accounts for unvisited parts of the tree in advance through an unconstrained linear estimator and adds a bias term that reflects the contribution of as-yet undecided symbols. By applying the linear estimate-based look-ahead path metric to an M-algorithm that selects the best M paths for each level of the tree we develop a new soft-input soft-output tree detector, called an improved soft-input soft-output M-algorithm (ISS-MA). Based on an analysis of the probability of correct path loss, we show that the improved path metric offers substantial performance gain over the conventional path metric. We also demonstrate through simulations that the ISS-MA provides a better performance-complexity trade-off than existing soft-input soft-output detection algorithms.
This paper proposes a novel technique to prove a one-shot version of achievability results in network information theory. The technique is not based on covering and packing lemmas. In this technique, we use an stochastic encoder and decoder with a pa rticular structure for coding that resembles both the ML and the joint-typicality coders. Although stochastic encoders and decoders do not usually enhance the capacity region, their use simplifies the analysis. The Jensen inequality lies at the heart of error analysis, which enables us to deal with the expectation of many terms coming from stochastic encoders and decoders at once. The technique is illustrated via several examples: point-to-point channel coding, Gelfand-Pinsker, Broadcast channel (Marton), Berger-Tung, Heegard-Berger/Kaspi, Multiple description coding and Joint source-channel coding over a MAC. Most of our one-shot results are new. The asymptotic forms of these expressions is the same as that of classical results. Our one-shot bounds in conjunction with multi-dimensional Berry-Essen CLT imply new results in the finite blocklength regime. In particular applying the one-shot result for the memoryless broadcast channel in the asymptotic case, we get the entire region of Martons inner bound without any need for time-sharing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا