ﻻ يوجد ملخص باللغة العربية
We propose a technique for quantum nondemolition (QND) measurement and heralded preparation of Fock states by dynamics of electromagnetically induced transparency (EIT). An atomic ensemble trapped in an optical cavity is driven by two external continuous-wave classical fields to form EIT in steady state. As soon as a weak coherent field is injected into the cavity, the EIT system departs from steady state, falls into transient state dynamics by the dispersive coupling between cavity injected photons and atoms. Because the imaginary part of time-dependent linear susceptibility Im[X(t)] of the atomic medium explicitly depends on the number n of photons during the process of transient state dynamics, the measurement on the change of transmission of the probe field can be used for QND measurement of small photon number, and thus create the photon Fock states in particular single-photon state in a heralded way.
Electromagnetically induced transparency (EIT) is a signature of quantum interference in an atomic three-level system. By driving the dressed cavity-qubit states of a two-dimensional circuit QED system, we generate a set of polariton states in the ne
We investigate a hybrid optomechanical system comprised of a mechanical oscillator and an atomic 3-level ensemble within an optical cavity. We show that a suitably tailored cavity field response via Electromagnetically Induced Transparency (EIT) in t
Electromagnetically induced transparency (EIT) has been extensively studied in various systems. However, it is not easy to observe in superconducting quantum circuits (SQCs), because the Rabi frequency of the strong controlling field corresponding to
We report on the all-optical detection of Rydberg states in a effusive atomic beam of strontium atoms using electromagnetically induced transparency (EIT). Using narrow-linewidth CW lasers we obtain an EIT linewidth of 5 MHz. To illustrate the high s
We present an experimental proposal to achieve a strong photon blockade by employing electromagnetically induced transparency (EIT) with single alkaline-earth-metal atom trapped in an optical cavity. In the presence of optical Stark shift, both secon