ترغب بنشر مسار تعليمي؟ اضغط هنا

KIC 4247791: A SB4 system with two eclipsing binaries (2EBs)

132   0   0.0 ( 0 )
 نشر من قبل Holger Lehmann
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف H. Lehmann




اسأل ChatGPT حول البحث

KIC 4247791 is an eclipsing binary observed by the Kepler satellite mission. We wish to determine the nature of its components and in particular the origin of a shallow dip in its Kepler light curve that previous investigations have been unable to explain in a unique way. We analyze newly obtained high-resolution spectra of the star using synthetic spectra based on atmosphere models, derive the radial velocities of the stellar components from cross-correlation with a synthetic template, and calculate the orbital solution. We use the JKTEBOP program to model the Kepler light curve of KIC 4247791. We find KIC 4247791 to be a SB4 star. The radial velocity variations of its four components can be explained by two separate eclipsing binaries. In contradiction to previous photometric findings, we show that the observed composite spectrum as well as the derived masses of all four of its components correspond to spectral type F. The observed small dip in the light curve is not caused by a transit-like phenomenon but by the eclipses of the second binary system. We find evidence that KIC 4247791 might belong to the very rare hierarchical SB4 systems with two eclipsing binaries.



قيم البحث

اقرأ أيضاً

KIC 7177553 was observed by the Kepler satellite to be an eclipsing eccentric binary star system with an 18-day orbital period. Recently, an eclipse timing study of the Kepler binaries has revealed eclipse timing variations in this object with an amp litude of about 100 sec, and an outer period of 529 days. The implied mass of the third body is that of a superJupiter, but below the mass of a brown dwarf. We therefore embarked on a radial velocity study of this binary to determine its system configuration and to check the hypothesis that it hosts a giant planet. From the radial velocity measurements, it became immediately obvious that the same Kepler target contains another eccentric binary, this one with a 16.5-day orbital period. Direct imaging using adaptive optics reveals that the two binaries are separated by 0.4 arcsec (about 167 AU), and have nearly the same magnitude (to within 2%). The close angular proximity of the two binaries, and very similar Gamma velocities, strongly suggest that KIC 7177553 is one of the rare SB4 systems consisting of two eccentric binaries where at least one system is eclipsing. Both systems consist of slowly rotating, non-evolved, solar-like stars of comparable masses. From the orbital separation and the small difference in Gamma velocity, we infer that the period of the outer orbit most likely lies in the range 1000 to 3000 years. New images taken over the next few years, as well as the high-precision astrometry of the Gaia satellite mission, will allow us to set much narrower constraints on the system geometry. Finally, we note that the observed eclipse timing variations in the Kepler data cannot be produced by the second binary. Further spectroscopic observations on a longer time scale will be required to prove the existence of the massive planet.
We present a quintuple star system that contains two eclipsing binaries. The unusual architecture includes two stellar images separated by 11 on the sky: EPIC 212651213 and EPIC 212651234. The more easterly image (212651213) actually hosts both eclip sing binaries which are resolved within that image at 0.09, while the westerly image (212651234) appears to be single in adaptive optics (AO), speckle imaging, and radial velocity (RV) studies. The A binary is circular with a 5.1-day period, while the B binary is eccentric with a 13.1-day period. The gamma velocities of the A and B binaries are different by ~10 km/s. That, coupled with their resolved projected separation of 0.09, indicates that the orbital period and separation of the C binary (consisting of A orbiting B) are ~65 years and ~25 AU, respectively, under the simplifying assumption of a circular orbit. Motion within the C orbit should be discernible via future RV, AO, and speckle imaging studies within a couple of years. The C system (i.e., 212651213) has a radial velocity and proper motion that differ from that of 212651234 by only ~1.4 km/s and ~3 mas/yr. This set of similar space velocities in 3 dimensions strongly implies that these two objects are also physically bound, making this at least a quintuple star system.
We present a strongly interacting quadruple system associated with the K2 target EPIC 220204960. The K2 target itself is a Kp = 12.7 magnitude star at Teff ~ 6100 K which we designate as B-N (blue northerly image). The host of the quadruple system, h owever, is a Kp = 17 magnitude star with a composite M-star spectrum, which we designate as R-S (red southerly image). With a 3.2 separation and similar radial velocities and photometric distances, B-N is likely physically associated with R-S, making this a quintuple system, but that is incidental to our main claim of a strongly interacting quadruple system in R-S. The two binaries in R-S have orbital periods of 13.27 d and 14.41 d, respectively, and each has an inclination angle of >89 degrees. From our analysis of radial velocity measurements, and of the photometric lightcurve, we conclude that all four stars are very similar with masses close to 0.4 Msun. Both of the binaries exhibit significant ETVs where those of the primary and secondary eclipses diverge by 0.05 days over the course of the 80-day observations. Via a systematic set of numerical simulations of quadruple systems consisting of two interacting binaries, we conclude that the outer orbital period is very likely to be between 300 and 500 days. If sufficient time is devoted to RV studies of this faint target, the outer orbit should be measurable within a year.
76 - V. Kudak , M. Fedurco , V. Perig 2021
We present the first BVR photometry, period variation, and photometric light-curve analysis of two poorly studied eclipsing binaries V1321 Cyg and CR Tau. Observations were carried out from November 2017 to January 2020 at the observatory of Uzhhorod National University. Period variations were studied using all available early published as well as our minima times. We have used newly developed ELISa code for the light curve analysis and determination of photometric parameters of both systems. We found that V1321 Cyg is a close detached eclipsing system with a low photometric mass ratio of $q=0.28$ which suggests that the binary is a post mass transfer system. No significant period changes in this system are detected. CR Tau is, on the other hand, a semi-detached system where the secondary component almost fills its Roche lobe. We detected a long-term period increase at a rate of $1.49 times 10^{-7} d/y$, which support mass transfer from lower mass secondary component to the more massive primary.
We report the discovery of a compact, coplanar, quadruply-lined, eclipsing quadruple star system from TESS data, TIC 454140642, also known as TYC 0074-01254-1. The target was first detected in Sector 5 with 30-min cadence in Full-Frame Images and the n observed in Sector 32 with 2-min cadence. The light curve exhibits two sets of primary and secondary eclipses with periods of PA = 13.624 days (binary A) and PB = 10.393 days (binary B). Analysis of archival and follow-up data shows clear eclipse-timing variations and divergent radial velocities, indicating dynamical interactions between the two binaries and confirming that they form a gravitationally-bound quadruple system with a 2+2 hierarchy. The Aa+Ab binary, Ba+Bb binary, and A-B system are aligned with respect to each other within a fraction of a degree: the respective mutual orbital inclinations are 0.25 degrees (A vs B), 0.37 degrees (A vs A-B), and 0.47 degrees (B vs A-B). The A-B system has an orbital period of 432 days - the second shortest amongst confirmed quadruple systems - and an orbital eccentricity of 0.3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا