ﻻ يوجد ملخص باللغة العربية
For an arbitrary del Pezzo surface S, we compute alpha(S), which is the volume of a certain polytope in the dual of the effective cone of S, using Magma and Polymake. The constant alpha(S) appears in Peyres conjecture for the leading term in the asymptotic formula for the number of rational points of bounded height on S over number fields.
We state a conjecture that relates the derived category of smooth representations of a p-adic split reductive group with the derived category of (quasi-)coherent sheaves on a stack of L-parameters. We investigate the conjecture in the case of the pri
We completely classify all subbundles of a given vector bundle on the Fargues-Fontaine curve. Our classification is given in terms of a simple and explicit condition on Harder-Narasimhan polygons. Our proof is inspired by the proof of the main theore
More than four decades ago, Eisenbud, Khimv{s}iav{s}vili, and Levine introduced an analogue in the algebro-geometric setting of the notion of local degree from differential topology. Their notion of degree, which we call the EKL-degree, can be though
Let $mathcal{X}$ be a regular projective arithmetic variety equipped with an ample hermitian line bundle $overline{mathcal{L}}$. We prove that the proportion of global sections $sigma$ with $leftlVert sigma rightrVert_{infty}<1$ of $overline{mathcal{
We formulate a few conjectures on some hypothetical coherent sheaves on the stacks of arithmetic local Langlands parameters, including their roles played in the local-global compatibility in the Langlands program. We survey some known results as evidences of these conjectures.