ﻻ يوجد ملخص باللغة العربية
$(N(k),xi)$-semi-Riemannian manifolds are defined. Examples and properties of $(N(k),xi)$-semi-Riemannian manifolds are given. Some relations involving ${cal T}_{a}$-curvature tensor in $(N(k),xi)$-semi-Riemannian manifolds are proved. $xi $-${cal T}_{a}$-flat $(N(k),xi)$-semi-Riemannian manifolds are defined. It is proved that if $M$ is an $n$-dimensional $xi $-${cal T}_{a}$-flat $(N(k),xi)$-semi-Riemannian manifold, then it is $eta $-Einstein under an algebraic condition. We prove that a semi-Riemannian manifold, which is $T$-recurrent or $T$-symmetric, is always $T$-semisymmetric, where $T$ is any tensor of type $(1,3)$. $({cal T}_{a}, {cal T}_{b}) $-semisymmetric semi-Riemannian manifold is defined and studied. The results for ${cal T}_{a}$-semisymmetric, ${cal T}_{a}$-symmetric, ${cal T}_{a}$-recurrent $(N(k),xi)$-semi-Riemannian manifolds are obtained. The definition of $({cal T}_{a},S_{{cal T}_{b}})$-semisymmetric semi-Riemannian manifold is given. $({cal T}_{a},S_{{cal T}_{b}})$-semisymmetric $(N(k),xi)$-semi-Riemannian manifolds are classified. Some results for ${cal T}_{a}$-Ricci-semisymmetric $(N(k),xi)$-semi-Riemannian manifolds are obtained.
Definition of $({cal T}_{a},{cal T}_{b})$-pseudosymmetric semi-Riemannian manifold is given. $({cal T}_{a},{cal T}_{b})$-pseudosy mmetric $(N(k),xi)$-semi-Riemannian manifolds are classified. Some results for ${cal T}_{a}$-pseudosymmetric $(N(k),xi)$
In this paper, we prove that the deformed Riemannian extension of any affine Szabo manifold is a Szabo pseudo-Riemannian metric and vice-versa. We proved that the Ricci tensor of an affine surface is skew-symmetric and nonzero everywhere if and only
We find the index of $widetilde{ abla}$-quasi-conformally symmetric and $widetilde{ abla}$-concircularly symmetric semi-Riemannian manifolds, where $widetilde{ abla}$ is metric connection.
We introduce a class of null hypersurfaces of a semi-Riemannian manifold, namely, screen quasi-conformal hypersurfaces, whose geometry may be studied through the geometry of its screen distribution. In particular, this notion allows us to extend some
A {em 2-Riemannian manifold} is a differentiable manifold exhibiting a 2-inner product on each tangent space. We first study lower dimensional 2-Riemannian manifolds by giving necessary and sufficient conditions for flatness. Afterward we associate t