ترغب بنشر مسار تعليمي؟ اضغط هنا

Conductance beyond the Landauer limit and charge pumping in quantum wires

123   0   0.0 ( 0 )
 نشر من قبل Jay Deep Sau
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Periodically driven systems, which can be described by Floquet theory, have been proposed to show characteristic behavior that is distinct from static Hamiltonians. Floquet theory proposes to describe such periodically driven systems in terms of states that are indexed by a photon number in addition to the usual Hilbert space of the system. We propose a way to measure directly this additional Floquet degree of freedom by the measurement of the DC conductance of a single channel quantum point contact. Specifically, we show that a single channel wire augmented with a grating structure when irradiated with microwave radiation can show a DC conductance above the limit of one conductance quantum set by the Landauer formula. Another interesting feature of the proposed system is that being non-adiabatic in character, it can be used to pump a strong gate-voltage dependent photo-current even with linearly polarized radiation.



قيم البحث

اقرأ أيضاً

We study the phenomenon of adiabatic quantum charge pumping in systems supporting fractionally charged fermionic bound states, in two different setups. The first quantum pump setup consists of a charge-density-modulated quantum wire, and the second o ne is based on a semiconducting nanowire with Rashba spin-orbit interaction, in the presence of a spatially oscillating magnetic field. In both these quantum pumps transport is investigated in a N-X-N geometry, with the system of interest (X) connected to two normal-metal leads (N), and the two pumping parameters are the strengths of the effective wire-lead barriers. Pumped charge is calculated within the scattering matrix formalism. We show that quantum pumping in both setups provides a unique signature of the presence of the fractional-fermion bound states, in terms of asymptotically quantized pumped charge. Furthermore, we investigate shot noise arising due to quantum pumping, verifying that quantized pumped charge corresponds to minimal shot noise.
138 - T. Rejec 2000
We study the conductance threshold of clean nearly straight quantum wires in the magnetic field. As a quantitative example we solve exactly the scattering problem for two-electrons in a wire with planar geometry and a weak bulge. From the scattering matrix we determine conductance via the Landauer-Buettiker formalism. The conductance anomalies found near 0.25(2e^2/h) and 0.75(2e^2/h) are related to a singlet resonance and a triplet resonance, respectively, and survive to temperatures of a few degrees. With increasing in-plane magnetic field the conductance exhibits a plateau at e^2/h, consistent with recent experiments.
We demonstrate controlled pumping of Cooper pairs down to the level of a single pair per cycle, using an rf-driven Cooper-pair sluice. We also investigate the breakdown of the adiabatic dynamics in two different ways. By transferring many Cooper pair s at a time, we observe a crossover between pure Cooper-pair and mixed Cooper-pair-quasiparticle transport. By tuning the Josephson coupling that governs Cooper-pair tunneling, we characterize Landau-Zener transitions in our device. Our data are quantitatively accounted for by a simple model including decoherence effects.
Thermal boundary conductance (TBC) is critical in many thermal and energy applications. A decades-old puzzle has been that many of the measured TBCs, such as those well characterized across Al/Si and ZnO/GaN interfaces, significantly exceed theoretic al results or even the absolute upper limit called the ``radiation limit, suggesting the failure of the theory. Here, we identify that for high-transmission interfaces, the commonly assumed phonon local thermal equilibrium adjacent to the interface fails, and the measurable phonon temperatures are not their emission temperature. We hence develop a ``nonequilibrium Landauer approach and define the unique ``dressed and ``intrinsic TBCs. Combining our approach even with a simple diffuse mismatch model (DMM) nearly doubles the theoretical TBCs across the Al/Si and ZnO/GaN interfaces, and the theoretical results agree with experiments for the first time. The radiation limit is also redefined and found to increase over 100% over the original radiation limit, and it can now well bound all the experimental data.
509 - Haidong Li , Yisong Zheng 2008
The contact conductance between graphene and two quantum wires which serve as the leads to connect graphene and electron reservoirs is theoretically studied. Our investigation indicates that the contact conductance depends sensitively on the graphene -lead coupling configuration. When each quantum wire couples solely to one carbon atom, the contact conductance vanishes at the Dirac point if the two carbon atoms coupling to the two leads belong to the same sublattice of graphene. We find that such a feature arises from the chirality of the Dirac electron in graphene. Such a chirality associated with conductance zero disappears when a quantum wire couples to multiple carbon atoms. The general result irrelevant to the coupling configuration is that the contact conductance decays rapidly with the increase of the distance between the two leads. In addition, in the weak graphene-lead coupling limit, when the distance between the two leads is much larger than the size of the graphene-lead contact areas and the incident electron energy is close to the Dirac point, the contact conductance is proportional to the square of the product of the two graphene-lead contact areas, and inversely proportional to the square of the distance between the two leads.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا