ﻻ يوجد ملخص باللغة العربية
We construct a new example of the spinning-particle model without Grassmann variables. The spin degrees of freedom are described on the base of an inner anti-de Sitter space. This produces both $Gamma^mu$ and $Gamma^{mu u}$,-matrices in the course of quantization. Canonical quantization of the model implies the Dirac equation. We present the detailed analysis of both the Lagrangian and the Hamiltonian formulations of the model and obtain the general solution to the classical equations of motion. Comparing {it Zitterbewegung} of the spatial coordinate with the evolution of spin, we ask on the possibility of space-time interpretation for the inner space of spin. We enumerate similarities between our analogous model of the Dirac equation and the two-body system subject to confining potential which admits only the elliptic orbits of the order of de Broglie wave-length. The Dirac equation dictates the perpendicularity of the elliptic orbits to the direction of center-of-mass motion.
New exact analytical bound-state solutions of the radial Dirac equation in 3+1 dimensions for two sets of couplings and radial potential functions are obtained via mapping onto the nonrelativistic bound-state solutions of the one-dimensional generali
The definitions of para-Grassmann variables and q-oscillator algebras are recalled. Some new properties are given. We then introduce appropriate coherent states as well as their dual states. This allows us to obtain a formula for the trace of a opera
We study all the symmetries of the free Schrodinger equation in the non-commutative plane. These symmetry transformations form an infinite-dimensional Weyl algebra that appears naturally from a two-dimensional Heisenberg algebra generated by Galilean
We obtain exact solutions of the (2+1) dimensional Dirac oscillator in a homogeneous magnetic field within the Anti-Snyder modified uncertainty relation characterized by a momentum cut-off ($pleq p_{text{max}}=1/ sqrt{beta}$). In ordinary quantum mec
In this work we study the Dirac equation with vector and scalar potentials in the spacetime generated by a cosmic string. Using an approximation for the centrifugal term, a solution for the radial differential equation is obtained. We consider the sc