ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning magnetism in FeAs-based materials via tetrahedral structure

366   0   0.0 ( 0 )
 نشر من قبل Kevin Kirshenbaum
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Resistivity, magnetic susceptibility, neutron scattering and x-ray crystallography measurements were used to study the evolution of magnetic order and crystallographic structure in single-crystal samples of the Ba1-xSrxFe2As2 and Sr1-yCayFe2As2 series. A non-monotonic dependence of the magnetic ordering temperature T0 on chemical pressure is compared to the progression of the antiferromagnetic staggered moment, characteristics of the ordering transition and structural parameters to reveal a distinct relationship between the magnetic energy scale and the tetrahedral bond angle, even far above T0. In Sr1-yCayFe2As2, an abrupt drop in T0 precisely at the Ca concentration where the tetrahedral structure approaches the ideal geometry indicates a strong coupling between the orbital bonding structure and the stabilization of magnetic order, providing strong constraints on the nature of magnetism in the iron-arsenide superconducting parent compounds.



قيم البحث

اقرأ أيضاً

We report the first comprehensive high-resolution angle-resolved photoemission measurements on CeFeAsO, a parent compound of FeAs-based high temperature superconductors with a mangetic/structural transition at $sim$150 K. In the magnetic ordering sta te, four hole-like Fermi surface sheets are observed near $Gamma$(0,0) and the Fermi surface near M(+/-$pi$,+/-$pi$) shows a tiny electron-like pocket at M surrounded by four Dirac cone-like strong spots. The unusual Fermi surface topology deviates strongly from the band structure calculations. The electronic signature of the magnetic/structural transition shows up in the dramatic change of the quasiparticle scattering rate. A dispersion kink at $sim$ 25meV is for the first time observed in the parent compound of Fe-based superconductors.
193 - S. C. Zhao , D. Hou , Y. Wu 2008
Raman spectra have been measured on iron-based quaternary CeO$_{1-x}$F$_x$FeAs and LaO$_{1-x}$F$_x$FeAs with varying fluorine doping at room temperatures. A group analysis has been made to clarify the optical modes. Based on the first principle calcu lations, the observed phonon modes can be assigned accordingly. In LaO$_{1-x}$F$_x$FeAs, the E$_g$ and A$_{1g}$ modes related to the vibrations of La, are suppressed with increasing F doping. However F doping only has a small effect on the E$_g$ and A$_{1g}$ modes of Fe and As. The Raman modes of La and As are absent in rare-earth substituted CeO$_{1-x}$F$_x$FeAs, and the E$_g$ mode of oxygen, corresponding to the in-plane vibration of oxygen, moves to around 450 cm$^{-1}$ and shows a very sharp peak. Electronic scattering background is low and electron-phonon coupling is not evident for the observed phonon modes. Three features are found above 500 cm$^{-1}$, which may be associated with multi-phonon process. Nevertheless it is also possible that they are related to magnetic fluctuations or interband transitions of d orbitals considering their energies.
We report on zero-field muon spin relaxation studies of cerium based heavy-fermion materials CeRh_{1-x}Ir_xIn_5. In the superconducting x=0.75 and 1 compositions muon spin relaxation functions were found to be temperature independent across T_c; no e vidence for the presence of electronic magnetic moments was observed. The x=0.5 material is antiferromagnetic below T_N=3.75 K and superconducting below T_c=0.8 K. Muon spin realxation spectra show the gradual onset of damped coherent oscillations characteristic of magnetic order below T_N. At 1.65 K the total oscillating amplitude accounts for at least 85% of the sample volume. No change in muon precession frequency or amplitude is detected on cooling below T_c, indicating the microscopic coexistence of magnetism and superconductivity in this material.
272 - G. T. Wang , Y. M. Qian , G. Xu 2009
The electronic structures of FeAs-compounds strongly depend on the Fe-As bonding, which can not be described successfully by the local density approximation (LDA). Treating the multi-orbital fluctuations from $ab$-$initio$ by LDA+Gutzwiller method, we are now able to predict the correct Fe-As bond-length, and find that Fe-As bonding-strength is 30% weaker, which will explain the observed soft phonon. The bands are narrowed by a factor of 2, and the $d_{3z^2-r^2}$ orbital is pushed up to cross the Fermi level, forming 3-dimensional Fermi surfaces, which suppress the anisotropy and the ($pi,pi$) nesting. The inter-orbital Hunds coupling $J$ rather than $U$ plays crucial roles to obtain these results.
We report on successful synthesis under high pressure of a series of polycrystalline GdFeAs O_{1-x}F_x high-Tc superconductors with different oxygen deficiency x=0.12 - 0.16 and also with no fluorine. We have found that the high-pressure synthesis te chnique is crucial for obtaining almost single-phase superconducting materials: by synthesizing the same compounds with no pressure in ampoules we obtained non-superconducting materials with an admixture of incidental phases. Critical temperature for all the materials was in the range 40 to 53K. The temperature derivative of the critical field dHc2/dT is remarkably high, indicating potentially high value of the second critical field Hc2 ~ 130T.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا