ﻻ يوجد ملخص باللغة العربية
We study the guiding of $^{87}$Rb 59D$_{5/2}$ Rydberg atoms in a linear, high-gradient, two-wire magnetic guide. Time delayed microwave ionization and ion detection are used to probe the Rydberg atom motion. We observe guiding of Rydberg atoms over a period of 5 ms following excitation. The decay time of the guided atom signal is about five times that of the initial state. We attribute the lifetime increase to an initial phase of $l$-changing collisions and thermally induced Rydberg-Rydberg transitions. Detailed simulations of Rydberg atom guiding reproduce most experimental observations and offer insight into the internal-state evolution.
We demonstrate the guiding of neutral atoms by the magnetic fields due to microfabricated current-carrying wires on a chip. Atoms are guided along a magnetic field minimum parallel to and above the current-carrying wires. Two waveguide configurations
Trapped neutral atoms have become a prominent platform for quantum science, where entanglement fidelity records have been set using highly-excited Rydberg states. However, controlled two-qubit entanglement generation has so far been limited to alkali
We develop a formalism for photoionization (PI) and potential energy curves (PECs) of Rydberg atoms in ponderomotive optical lattices and apply it to examples covering several regimes of the optical-lattice depth. The effect of lattice-induced PI on
We have realized a magnetic guide for ultracold chromium atoms by continuously loading atoms directly from a Zeeman slower into a horizontal guide. We observe an atomic flux of $2 cdot 10^7$ atoms/s and are able to control the mean velocity of the gu
We present a novel spectroscopic method for probing the insitu~density of quantum gases. We exploit the density-dependent energy shift of highly excited {Rydberg} states, which is of the order $10$MHz,/,1E14,cm$^{text{-3}}$ for rubidium~for triplet s