ﻻ يوجد ملخص باللغة العربية
We use inelastic neutron scattering to study the temperature dependence of the low-energy spin excitations in single crystals of superconducting FeTe$_{0.6}$Se$_{0.4}$ ($T_c=14$ K). In the low-temperature superconducting state, the imaginary part of the dynamic susceptibility at the electron and hole Fermi surfaces nesting wave vector $Q=(0.5,0.5)$, $chi^{primeprime}(Q,omega)$, has a small spin gap, a two-dimensional neutron spin resonance above the spin gap, and increases linearly with increasing $hbaromega$ for energies above the resonance. While the intensity of the resonance decreases like an order parameter with increasing temperature and disappears at temperature slightly above $T_c$, the energy of the mode is weakly temperature dependent and vanishes concurrently above $T_c$. This suggests that in spite of its similarities with the resonance in electron-doped superconducting BaFe$_{2-x}$(Co,Ni)$_x$As$_2$, the mode in FeTe$_{0.6}$Se$_{0.4}$ is not directly associated with the superconducting electronic gap.
We study Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ multi-band superconductor with $T_c=14$K by polarization-resolved Raman spectroscopy. Deep in the superconducting state, we detect pair-breaking excitation at 45cm$^{-1}$ ($2Delta=5.6$meV) in the $XY$($B_{2g}$)
We investigated the superconducting and transport properties in FeTe$_{1-x}$Se$_{x}$ (0.1 $leq$ $x$ $leq$ 0.4) single crystals prepared by O$_2$-annealing. Sharp superconducting transition width observed in magnetization measurement and the small res
Inelastic neutron scattering measurements have been performed on a superconducting single crystal FeTe$_{0.5}$Se$_{0.5}$ to examine the ${bf Q}$-dependent enhancement of the dynamical structure factor, $S({bf Q},E)$, from ${bf Q}$ = (0, 0) to ($pi$,
We present a study of the Seebeck and Nernst coefficients of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ extended up to 28 T. The large magnitude of the Seebeck coefficient in the optimally doped sample tracks a remarkably low normalized Fermi temperature, which, l
It has been clarified that bulk superconductivity in Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ can be induced by annealing in an appropriate atmosphere to remove the harmful effects of excess iron. In order to clarify the details of the annealing process, we st