ترغب بنشر مسار تعليمي؟ اضغط هنا

On self-complementarity relations of neutrino mixing

130   0   0.0 ( 0 )
 نشر من قبل Bo-Qiang Ma
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

With the latest results of a large mixing angle $theta_{13}$ for neutrinos by the T2K, MINOS and Double Chooz experiments, we find that the self-complementarity (SC) relations agree with the data in some angle-phase parametrizations of the lepton mixing matrix. There are three kinds of self-complementarity relations: (1) $vartheta_i+vartheta_j=vartheta_k=45^circ$; (2) $vartheta_i+vartheta_j=vartheta_k$; (3) $vartheta_i+vartheta_j=45^circ$ (where $i$, $j$, $k$ denote the mixing angles in the angle-phase parametrizations). We present a detailed study on the self-complementarity relations in nine different angle-phase parametrizations, and also examine the explicit expressions in reparametrization-invariant form, as well as their deviations from global fit. These self-complementarity relations may lead to new perspective on the mixing pattern of neutrinos.



قيم البحث

اقرأ أيضاً

The origin of small mixing among the quarks and a large mixing among the neutrinos has been an open question in particle physics. In order to answer this question, we postulate general relations among the quarks and the leptonic mixing angles at a hi gh scale, which could be the scale of Grand Unified Theories. The central idea of these relations is that the quark and the leptonic mixing angles can be unified at some high scale either due to some quark-lepton symmetry or some other underlying mechanism and as a consequence, the mixing angles of the leptonic sector are proportional to that of the quark sector. We investigate the phenomenology of the possible relations where the leptonic mixing angles are proportional to the quark mixing angles at the unification scale by taking into account the latest experimental constraints from the neutrino sector. These relations are able to explain the pattern of leptonic mixing at the low scale and thereby hint that these relations could be possible signatures of a quark-lepton symmetry or some other underlying quark-lepton mixing unification mechanism at some high scale linked to Grand Unified Theories.
217 - Ernest Ma 2012
A new and novel idea for a predictive neutrino mass matrix is presented, using the non-Abelian discrete symmetry A(4) and the seesaw mechanism with only two heavy neutral fermion singlets. Given the components of the one necessarily massless neutrino eigenstate, the other two massive states are automatically generated. A realistic example is discussed with predictions of a normal hierarchy of neutrino masses and maximal CP violation.
We explore the complementarity between LHC searches and neutrino experiments in probing neutrino non-standard interactions. Our study spans the theoretical frameworks of effective field theory, simplified model and an illustrative UV completion, high lighting the synergies and distinctive features in all cases. We show that besides constraining the allowed NSI parameter space, the LHC data can break important degeneracies present in oscillation experiments such as DUNE, while the latter play an important role in probing light and weakly coupled physics undetectable at the LHC.
218 - Xinyi Zhang , Bo-Qiang Ma 2012
The latest experimental progress have established three kinds of neutrino oscillations with three mixing angles measured to rather high precision. There is still one parameter, i.e., the CP violating phase, missing in the neutrino mixing matrix. It i s shown that a replay between different parametrizations of the mixing matrix can determine the full neutrino mixing matrix together with the CP violating phase. From the maximal CP violation observed in the original Kobayashi-Maskawa (KM) scheme of quark mixing matrix, we make an Ansatz of maximal CP violation in the neutrino mixing matrix. This leads to the prediction of all nine elements of the neutrino mixing matrix and also a remarkable prediction of the CP violating phase $delta_{rm CK}=(85.48^{+4.67(+12.87)}_{-1.80(-4.90)})^circ$ within $1sigma (3sigma)$ range from available experimental information. We also predict the three angles of the unitarity triangle corresponding to the quark sector for confronting with the CP-violation related measurements.
With the progress of increasingly precise measurements on the neutrino mixing angles, phenomenological relations such as quark-lepton complementarity (QLC) among mixing angles of quarks and leptons and self-complementarity (SC) among lepton mixing an gles have been observed. Using the latest global fit results of the quark and lepton mixing angles in the standard Chau-Keung scheme, we calculate the mixing angles and CP-violating phases in the other eight different schemes. We check the dependence of these mixing angles on the CP-violating phases in different phase schemes. The dependence of QLC and SC relations on the CP phase in the other eight schemes is recognized and then analyzed, suggesting that measurements on CP-violating phases of the lepton sector are crucial to the explicit forms of QLC and SC in different schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا