ترغب بنشر مسار تعليمي؟ اضغط هنا

No role for muons in the DAMA annual modulation results

130   0   0.0 ( 0 )
 نشر من قبل Rita Bernabei
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Bernabei




اسأل ChatGPT حول البحث

This paper gathers arguments and reasons why muons surviving the Gran Sasso mountain cannot mimic the Dark Matter annual modulation signature exploited by the DAMA/NaI and DAMA/LIBRA experiments. A number of these items have already been presented in individual papers. Further arguments have been addressed here in order to present a comprehensive collection and to enable a wider community to correctly approach this point.



قيم البحث

اقرأ أيضاً

123 - R. Bernabei 2014
This paper summarizes in a simple and intuitive way why the neutrons, the muons and the solar neutrinos cannot give any significant contribution to the DAMA annual modulation results. A number of these elements have already been presented in individu al papers; they are recalled here. Afterwards, few simple considerations are summarized which already demonstrate the incorrectness of the claim reported in PRL 113 (2014) 081302.
We estimate rates of solar neutrino-induced neutrons in a DAMA/LIBRA-like detector setup, and find that the needed contribution to explain the annual modulation would require neutrino-induced neutron cross sections several orders of magnitude larger than current calculations indicate. Although these cross sections have never been measured, it is likely that the solar-neutrino effect on DAMA/LIBRA is negligible.
72 - R. Cerulli 2017
The DAMA experiment using ultra low background NaI(Tl) crystal scintillators has measured an annual modulation effect in the keV region which satisfies all the peculiarities of an effect induced by Dark Matter particles. In this paper we analyze this annual modulation effect in terms of mirror Dark Matter, an exact duplicate of ordinary matter from parallel hidden sector, which chemical composition is dominated by mirror helium while it can also contain significant fractions of heavier elements as Carbon and Oxygen. Dark mirror atoms are considered to interact with the target nuclei in the detector via Rutherford-like scattering induced by kinetic mixing between mirror and ordinary photons, both being massless. In the present analysis we consider various possible scenarios for the mirror matter chemical composition. For all the scenarios, the relevant ranges for the kinetic mixing parameter have been obtained taking also into account various existing uncertainties in nuclear and particle physics quantities.
The long-standing model-independent annual modulation effect measured by DAMA Collaboration is examined in the context of asymmetric mirror dark matter, assuming that dark atoms interact with target nuclei in the detector via kinetic mixing between m irror and ordinary photons, both being massless. The relevant ranges for the kinetic mixing parameter are obtained taking into account various existing uncertainties in nuclear and particle physics quantities as well as characteristic density and velocity distributions of dark matter in different halo models.
167 - R. Bernabei 2010
DAMA/LIBRA is running at the Gran Sasso National Laboratory of the I.N.F.N.. Here the results obtained with a further exposure of 0.34 ton x yr are presented. They refer to two further annual cycles collected one before and one after the first DAMA/L IBRA upgrade occurred on September/October 2008. The cumulative exposure with those previously released by the former DAMA/NaI and by DAMA/LIBRA is now 1.17 ton x yr, corresponding to 13 annual cycles. The data further confirm the model independent evidence of the presence of Dark Matter (DM) particles in the galactic halo on the basis of the DM annual modulation signature (8.9 sigma C.L. for the cumulative exposure). In particular, with the cumulative exposure the modulation amplitude of the single-hit events in the (2 -- 6) keV energy interval measured in NaI(Tl) target is (0.0116 +- 0.0013) cpd/kg/keV; the measured phase is (146 +- 7) days and the measured period is (0.999 +- 0.002) yr, values well in agreement with those expected for the DM particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا