ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible superconductivity in multi-layer-graphene by application of a gate voltage

115   0   0.0 ( 0 )
 نشر من قبل Pablo D. Esquinazi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The carrier density in tens of nanometers thick graphite samples (multi-layer-graphene, MLG) has been modified by applying a gate voltage ($V_g$) perpendicular to the graphene planes. Surface potential microscopy shows inhomogeneities in the carrier density ($n$) in the sample near surface region and under different values of $V_g$ at room temperature. Transport measurements on different MLG samples reveal that under a large enough applied electric field these regions undergo a superconducting-like transition at $T lesssim 17$ K. A magnetic field applied parallel or normal to the graphene layers suppresses the transition without changing appreciably the transition temperature.



قيم البحث

اقرأ أيضاً

In order to explore why the multi-layered cuprates have such high Tcs, we have examined various inter-layer processes. Since the inter-layer one-electron hopping has little effects on the band structure, we turn to the inter-layer pair hopping. The s uperconductivity in a double-layer Hubbard model with and without the inter-layer pair hopping, as studied by solving the Eliashberg equation with the fluctuation exchange approximation, reveals that the inter-layer pair hopping acts to increase the pairing interaction and the self-energy simultaneously, but that the former effect supersedes the latter and enhances the superconductivity. The inter-layer pair hopping considered here is for off-site pairs, for which we discuss the effect of retaining SU(2) symmetry, along with how the the sign of the pair hopping determines the relative configuration of d-waves between the adjacent layers.
The recent discovery of the superconductivity in the doped infinite layer nickelates $R$NiO$_2$ ($R$=La, Pr, Nd) is of great interest since the nickelates are isostructural to doped (Ca,Sr)CuO$_2$ having superconducting transition temperature ($T_{rm c}$) of about 110 K. Verifying the commonalities and differences between these oxides will certainly give a new insight into the mechanism of high $T_{rm c}$ superconductivity in correlated electron systems. In this paper, we review experimental and theoretical works on this new superconductor and discuss the future perspectives for the nickel age of superconductivity.
Electronic properties of low dimensional superconductors are determined by many-body-effects. This physics has been studied traditionally with superconducting thin films, and in recent times with two-dimensional electron gases (2DEGs) at oxide interf aces. In this work, we show that a superconducting 2DEG can be generated by simply evaporating a thin layer of metallic Al under ultra-high vacuum on a SrTiO3 crystal, whereby Al oxidizes into amorphous insulating alumina, doping the SrTiO3 surface with oxygen vacancies. The superconducting critical temperature of the resulting 2DEG is found to be tunable with a gate voltage with a maximum value of 360 mK. A gate-induced switching between superconducting and resistive states is demonstrated. Compared to conventionally-used pulsed-laser deposition (PLD), our work simplifies to a large extent the process of fabricating oxide-based superconducting 2DEGs. It will make such systems accessible to a broad range of experimental techniques useful to understand low-dimensional phase transitions and complex many-body-phenomena in electronic systems.
We investigate the electronic instabilities in a Kagome lattice with Rashba spin-orbital coupling by the unbiased singular-mode functional renormalization group. At the parent $1/3$-filling, the normal state is a quantum spin Hall system. Since the b ottom of the conduction band is near the van Hove singularity, the electron-doped system is highly susceptible to competing orders upon electron interactions. The topological nature of the parent system enriches the complexity and novelty of such orders. We find $120^o$-type intra-unitcell antiferromagnetic order, $f$-wave superconductivity and chiral $p$-wave superconductivity with increasing electron doping above the van Hove point. In both types of superconducting phases, there is a mixture of comparable spin singlet and triplet components because of the Rashba coupling. The chiral $p$-wave superconducting state is characterized by a Chern number $Z=1$, supporting a branch of Weyl fermion states on each edge. The model bares close relevance to the so-called $sd^2$-graphenes proposed recently.
We report a comprehensive TF-muSR study of TiSe_2Cu_2. The magnetic penetration depth was found to saturate at low temperature as expected in an s-wave SC. As x is increased we find that the superfluid density increases and the size of the supercondu cting gap, calculated from the temperature dependence of the superfluid density, is approaching the BCS value. However, for low values of x, the gap is smaller than the weak-coupling BCS prediction suggesting that two superconducting gaps are present in the sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا