ﻻ يوجد ملخص باللغة العربية
The light curves of 252 B-star candidates in the Kepler data base are analyzed in a similar fashion to that done by Balona et al. (2011) to further characterize B star variability, increase the sample of variable B stars for future study, and to identify stars whose power spectra include particularly interesting features such as frequency groupings. Stars are classified as either constant light emitters, $beta$ Cep stars, slowly pulsating B stars, hybrid pulsators, binaries or stars whose light curves are dominated by rotation (Bin/Rot), hot subdwarfs, or white dwarfs. One-hundred stars in our sample were found to be either light contants or to be variable at a level of less than 0.02 mmag. We increase the number of candidate B-star variables found in the Kepler data base by Balona et al. (2011) in the following fashion: $beta$ Cep stars from 0 to 10, slowly pulsating B stars from 8 to 54, hybrid pulsators from 7 to 21, and Bin/Rot stars from 23 to 82. For comparison purposes, approximately 51 SPBs and 6 hybrids had been known prior to 2007. The number of $beta$ Cep stars known prior to 2004 was 93. A secondary result of this study is the identification of an additional 11 pulsating white dwarf candidates, four of which possess frequency groupings.
High precision Kepler photometry is used to explore the details of AGB light curves. Since AGB variability has a typical time scale on order of a year we discuss at length the removal of long term trends and quarterly changes in Kepler data. Photomet
As a response to the white paper call, we propose to turn Kepler to the South Ecliptic Pole (SEP) and observe thousands of large amplitude variables for years with high cadence in the frame of the Kepler-SEP Mission. The degraded pointing stability w
We present our analyses of 15 months of Kepler data on KIC 10139564. We detected 57 periodicities with a variety of properties not previously observed all together in one pulsating subdwarf B star. Ten of the periodicities were found in the low-frequ
The NASA {it Kepler} mission has been in science operation since May 2009 and is providing high precision, high cadence light curves of over 150,000 targets. Prior to launch, nine cataclysmic variables were known to lie within {it Keplers} field of v
We search for transits around all known pulsating {delta} Sct variables (6500 K < Teff < 10 000 K) in the long-cadence Kepler data after subtracting the pulsation signal through an automated routine. To achieve this, we devise a simple and computatio