ﻻ يوجد ملخص باللغة العربية
We perform high-resolution real-time read-out of the motion of a single trapped and laser-cooled Ba ion. By using an interferometric setup we demonstrate shot-noise limited measurement of thermal oscillations with resolution of 4 times the standard quantum limit. We apply the real-time monitoring for phase control of the ion motion through a feedback loop, suppressing the photon recoil-induced phase diffusion. Due to the spectral narrowing in phase-locked mode, the coherent ion oscillation is measured with resolution of about 0.3 times the standard quantum limit.
It is expected that ion trap quantum computing can be made scalable through protocols that make use of transport of ion qubits between sub-regions within the ion trap. In this scenario, any magnetic field inhomogeneity the ion experiences during the
A method for the experimental reconstruction of the quantum state of motion for a single trapped ion is proposed. It is based on the measurement of the ground state population of the trap after a sudden change of the trapping potential. In particular
The interplay of noise and quantum coherence in transport gives rise to rich dynamics relevant for a variety of systems. In this work, we put forward a proposal for an experiment testing noise-induced transport in the vibrational modes of a chain of
We report a demonstration and quantitative characterization of one-dimensional cavity cooling of a single trapped 88Sr+ ion in the resolved sideband regime. We measure the spectrum of cavity transitions, the rates of cavity heating and cooling, and t
Quantum phase transitions (QPTs) are usually associated with many-body systems with large degrees of freedom approaching the thermodynamic limit. In such systems, the many-body ground state shows abrupt changes at zero temperature when the control pa