ﻻ يوجد ملخص باللغة العربية
The VERITAS array of Cherenkov telescopes has carried out a deep observational program on the nearby dwarf spheroidal galaxy Segue 1. We report on the results of nearly 48 hours of good quality selected data, taken between January 2010 and May 2011. No significant $gamma$-ray emission is detected at the nominal position of Segue 1, and upper limits on the integrated flux are derived. According to recent studies, Segue 1 is the most dark matter-dominated dwarf spheroidal galaxy currently known. We derive stringent bounds on various annihilating and decaying dark matter particle models. The upper limits on the velocity-weighted annihilation cross-section are $mathrm{<sigma v >^{95% CL} lesssim 10^{-23} cm^{3} s^{-1}}$, improving our limits from previous observations of dwarf spheroidal galaxies by at least a factor of two for dark matter particle masses $mathrm{m_{chi}gtrsim 300 GeV}$. The lower limits on the decay lifetime are at the level of $mathrm{tau^{95% CL} gtrsim 10^{24} s}$. Finally, we address the interpretation of the cosmic ray lepton anomalies measured by ATIC and PAMELA in terms of dark matter annihilation, and show that the VERITAS observations of Segue 1 disfavor such a scenario.
We present constraints on the annihilation cross section of WIMP dark matter based on the joint statistical analysis of four dwarf galaxies with VERITAS. These results are derived from an optimized photon weighting statistical technique that improves
Several observations reveal that dwarf galaxy Segue 1 has a dark matter (DM) halo at least ~ 200 times more massive than its visible baryon mass of only ~ 103 solar masses. The baryon mass is dominated by stars with perhaps an interstellar gas mass o
We report the results of the observation of the nearby satellite galaxy Segue 1 performed by the MAGIC-I ground-based gamma-ray telescope between November 2008 and March 2009 for a total of 43.2 hours. No significant gamma-ray emission was found abov
The dwarf spheroidal galaxies (dSph) of the Milky Way are among the most attractive targets for indirect searches of dark matter. In this work, we reconstruct the dark matter annihilation (J-factor) and decay profiles for the newly discovered dSph Re
We present the first observational limits on the predicted synchrotron signals from particle Dark Matter annihilation models in dwarf spheroidal galaxies at radio frequencies below 1 GHz. We use a combination of survey data from the Murchison Widefie