ﻻ يوجد ملخص باللغة العربية
Sequence optimization, where the items in a list are ordered to maximize some reward has many applications such as web advertisement placement, search, and control libraries in robotics. Previous work in sequence optimization produces a static ordering that does not take any features of the item or context of the problem into account. In this work, we propose a general approach to order the items within the sequence based on the context (e.g., perceptual information, environment description, and goals). We take a simple, efficient, reduction-based approach where the choice and order of the items is established by repeatedly learning simple classifiers or regressors for each slot in the sequence. Our approach leverages recent work on submodular function maximization to provide a formal regret reduction from submodular sequence optimization to simple cost-sensitive prediction. We apply our contextual sequence prediction algorithm to optimize control libraries and demonstrate results on two robotics problems: manipulator trajectory prediction and mobile robot path planning.
Continuous submodular functions are a category of generally non-convex/non-concave functions with a wide spectrum of applications. The celebrated property of this class of functions - continuous submodularity - enables both exact minimization and app
We study the recently introduced idea of worst-case sensitivity for monotone submodular maximization with cardinality constraint $k$, which captures the degree to which the output argument changes on deletion of an element in the input. We find that
This paper bridges discrete and continuous optimization approaches for decomposable submodular function minimization, in both the standard and parametric settings. We provide improved running times for this problem by reducing it to a number of cal
Profit maximization (PM) is to select a subset of users as seeds for viral marketing in online social networks, which balances between the cost and the profit from influence spread. We extend PM to that under the general marketing strategy, and form
Many large-scale machine learning problems--clustering, non-parametric learning, kernel machines, etc.--require selecting a small yet representative subset from a large dataset. Such problems can often be reduced to maximizing a submodular set functi