ترغب بنشر مسار تعليمي؟ اضغط هنا

Tetramodules over a bialgebra form a 2-fold monoidal category

158   0   0.0 ( 0 )
 نشر من قبل Boris Shoikhet
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف Boris Shoikhet




اسأل ChatGPT حول البحث

This preprint contains a part of the results of our earlier preprint arXiv:0907.3335v2 presented in a form suitable for journal publication. It covers a construction of a 2-fold monoidal structure on the category of tetramodules, with all necessary definitions, and an overview of the results of R.Taillefer [Tai1,2] on tetramodules and the Gerstenhaber-Schack cohomology [GS] (formerly served as Appendix in arXiv:0907.3335v2), as well as a computation of the Gerstenhaber-Schack cohomology for the free commutative cocommutative bialgebra S(V), for a V is a vector space.



قيم البحث

اقرأ أيضاً

77 - Marek Zawadowski 2017
We show that the category of positive opetopes with contraction morphisms, i.e. all face maps and some degeneracies, forms a test category. The category of positive opetopic sets pOpeSet can be defined as a full subcategory of the category of polyg raphs Poly. An object of pOpeSet has generators whose codomains are again generators and whose domains are non-identity cells (i.e. non-empty composition of generators). The category pOpeSet is a presheaf category with the exponent being called the category of positive opetopes pOpe. Objects of pOpe are called positive opetopes and morphisms are face maps only. Since Poly has a full-on-isomorphisms embedding into the category of omega-categories oCat, we can think of morphisms in pOpe as omega-functors that send generators to generators. The category of positive opetopes with contractions pOpe_iota has the same objects and face maps pOpe, but in addition it has some degeneracy maps. A morphism in pOpe_iota is an omega-functor that sends generators to either generators or to identities on generators. We show that the category pOpe_iota is a test category.
In this paper, which is subsequent to our previous paper [PS] (but can be read independently from it), we continue our study of the closed model structure on the category $mathrm{Cat}_{mathrm{dgwu}}(Bbbk)$ of small weakly unital dg categories (in the sense of Kontsevich-Soibelman [KS]) over a field $Bbbk$. In [PS], we constructed a closed model structure on the category of weakly unital dg categories, imposing a technical condition on the weakly unital dg categories, saying that $mathrm{id}_xcdot mathrm{id}_x=mathrm{id}_x$ for any object $x$. Although this condition led us to a great simplification, it was redundant and had to be dropped. Here we get rid of this condition, and provide a closed model structure in full generality. The new closed model category is as well cofibrantly generated, and it is proven to be Quillen equivalent to the closed model category $mathrm{Cat}_mathrm{dg}(Bbbk)$ of (strictly unital) dg categories over $Bbbk$, given by Tabuada [Tab1]. Dropping the condition $mathrm{id}_x^2=mathrm{id}_x$ makes the construction of the closed model structure more distant from loc.cit., and requires new constructions. One of them is a pre-triangulated hull of a wu dg category, which in turn is shown to be a wu dg category as well. One example of a weakly unital dg category which naturally appears is the bar-cobar resolution of a dg category. We supply this paper with a refinement of the classical bar-cobar resolution of a unital dg category which is strictly unital (appendix B). A similar construction can be applied to constructing a cofibrant resolution in $mathrm{Cat}_mathrm{dgwu}(Bbbk)$.
120 - J. Fuchs , C. Schweigert 2001
We study properties of the category of modules of an algebra object A in a tensor category C. We show that the module category inherits various structures from C, provided that A is a Frobenius algebra with certain additional properties. As a by-prod uct we obtain results about the Frobenius-Schur indicator in sovereign tensor categories. A braiding on C is not needed, nor is semisimplicity. We apply our results to the description of boundary conditions in two-dimensional conformal field theory and present illustrative examples. We show that when the module category is tensor, then it gives rise to a NIM-rep of the fusion rules, and discuss a possible relation with the representation theory of vertex operator algebras.
We study abelian envelopes for pseudo-tensor categories with the property that every object in the envelope is a quotient of an object in the pseudo-tensor category. We establish an intrinsic criterion on pseudo-tensor categories for the existence of an abelian envelope satisfying this quotient property. This allows us to interpret the extension of scalars and Deligne tensor product of tensor categories as abelian envelopes, and to enlarge the class of tensor categories for which all extensions of scalars and tensor products are known to remain tensor categories. For an affine group scheme G, we show that pseudo-tensor subcategories of RepG have abelian envelopes with the quotient property, and we study many other such examples. This leads us to conjecture that all abelian envelopes satisfy the quotient property.
We start from any small strict monoidal braided Ab-category and extend it to a monoidal nonstrict braided Ab-category which contains braided bialgebras. The objects of the original category turn out to be modules for these bialgebras
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا