ﻻ يوجد ملخص باللغة العربية
Captures of alpha particles on the proton-richest Barium isotope, 130Ba, have been studied in order to provide cross section data for the modeling of the astrophysical gamma process. The cross sections of the 130Ba(alpha,gamma)134Ce and 130Ba(alpha,n)133Ce reactions have been measured with the activation technique in the center-of mass energy range between 11.6 and 16 MeV, close above the astrophysically relevant energies. As a side result, the cross section of the 132Ba(alpha,n)135Ce reaction has also been measured. The results are compared with the prediction of statistical model calculations, using different input parameters such as alpha+nucleus optical potentials. It is found that the (alpha,n) data can be reproduced employing the standard alpha+nucleus optical potential widely used in astrophysical applications. Assuming its validity also in the astrophysically relevant energy window, we present new stellar reaction rates for 130Ba(alpha,gamma)134Ce and 132Ba(alpha,gamma)136Ce and their inverse reactions calculated with the SMARAGD statistical model code. The highly increased 136Ce(gamma,alpha)132Ba rate implies that the p nucleus 130Ba cannot directly receive contributions from the Ce isotopic chain. Further measurements are required to better constrain this result.
Cross sections for the 168Yb(alpha,gamma)172Hf and 168Yb(alpha,n)171$Hf reactions were measured by means of the activation method using alpha particles with energies between 12.9 MeV and 15.1 MeV. The spectroscopy of the gamma rays emitted by the rea
(Shorten version of the PRC abstract) Alpha-induced reactions on 127I have been studied using the activation technique in order to provide cross section data for the modeling of the astrophysical gamma process. The relative intensity of the 536.1 keV
The astrophysical $s$-process is one of the two main processes forming elements heavier than iron. A key outstanding uncertainty surrounding $s$-process nucleosynthesis is the neutron flux generated by the ${}^{22}mathrm{Ne}(alpha, n){}^{25}mathrm{Mg
The aim of the present work is to measure the $^{121}$Sb($alpha,gamma$)$^{125}$I, $^{121}$Sb($alpha$,n)$^{124}$I, and $^{123}$Sb($alpha$,n)$^{126}$I reaction cross sections. The $alpha$-induced reactions on natural and enriched antimony targets were
One of the few p nuclei with an odd number of protons is 113In. Reaction cross sections of 113In(alpha,gamma)117Sb and 113In(alpha,n)116Sb have been measured with the activation method at center-of-mass energies between 8.66 and 13.64 MeV, close to t