ترغب بنشر مسار تعليمي؟ اضغط هنا

Feshbach spectroscopy and scattering properties of ultracold Li+Na mixtures

314   0   0.0 ( 0 )
 نشر من قبل Tobias Schuster
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have observed 26 interspecies Feshbach resonances at fields up to 2050 G in ultracold $^6$Li+$^{23}$Na mixtures for different spin-state combinations. Applying the asymptotic bound-state model to assign the resonances, we have found that most resonances have d-wave character. This analysis serves as guidance for a coupled-channel calculation, which uses modified interaction potentials to describe the positions of the Feshbach resonances well within the experimental uncertainty and to calculate their widths. The scattering length derived from the improved interaction potentials is experimentally confirmed and deviates from previously reported values in sign and magnitude. We give prospects for $^7$Li+$^{23}$Na and predict broad Feshbach resonances suitable for tuning.



قيم البحث

اقرأ أيضاً

139 - S. Knoop , T. Schuster , R. Scelle 2011
We have studied magnetic Feshbach resonances in an ultracold sample of Na prepared in the absolute hyperfine ground state. We report on the observation of three s-, eight d-, and three g-wave Feshbach resonances, including a more precise determinatio n of two known s-wave resonances, and one s-wave resonance at a magnetic field exceeding 200mT. Using a coupled-channels calculation we have improved the sodium ground-state potentials by taking into account these new experimental data, and derived values for the scattering lengths. In addition, a description of the molecular states leading to the Feshbach resonances in terms of the asymptotic-bound-state model is presented.
We have investigated the ultracold interspecies scattering properties of metastable triplet He and Rb. We performed state-of-the-art ab initio calculations of the relevant interaction potential, and measured the interspecies elastic cross section for an ultracold mixture of metastable triplet $^4$He and $^{87}$Rb in a quadrupole magnetic trap at a temperature of 0.5 mK. Our combined theoretical and experimental study gives an interspecies scattering length $a_{4+87}=+17^{+1}_{-4}$ $a_0$, which prior to this work was unknown. More general, our work shows the possibility of obtaining accurate scattering lengths using ab initio calculations for a system containing a heavy, many-electron atom, such as Rb.
184 - Marlon Nuske , Eite Tiesinga , 2014
We optimize a collision-induced cooling process for ultracold atoms in the nondegenerate regime. It makes use of a Feshbach resonance, instead of rf radiation in evaporative cooling, to selectively expel hot atoms from a trap. Using functional minimi zation we analytically show that for the optimal cooling process the resonance energy must be tuned such that it linearly follows the temperature. Here, optimal cooling is defined as maximizing the phase-space density after a fixed cooling duration. The analytical results are confirmed by numerical Monte-Carlo simulations. In order to simulate more realistic experimental conditions, we show that background losses do not change our conclusions, while additional non-resonant two-body losses make a lower initial resonance energy with non-linear dependence on temperature preferable.
We measure higher partial wave Feshbach resonances in an ultracold mixture of fermionic $^6$Li and bosonic $^{133}$Cs by magnetic field dependent atom-loss spectroscopy. For the $p$-wave Feshbach resonances we observe triplet structures corresponding to different projections of the pair rotation angular momentum onto the external magnetic field axis. We attribute the splittings to the spin-spin and spin-rotation couplings by modelling the observation using a full coupled-channel calculation. Comparison with an oversimplified model, estimating the spin-rotation coupling by describing the weakly bound close-channel molecular state with the perturbative multipole expansion, reveals the significant contribution of the molecular wavefunction at short internuclear distances. Our findings highlight the potential of Feshbach resonances in providing precise information on short- and intermediate-range molecular couplings and wavefunctions. The observed $d$-wave Feshbach resonances allow us to refine the LiCs singlet and triplet ground-state molecular potential curves at large internuclear separations.
Few-body correlations emerging in two-dimensional harmonically trapped mixtures, are comprehensively investigated. The presence of the trap leads to the formation of atom-dimer and trap states, in addition to trimers. The Tans contacts of these eigen states are studied for varying interspecies scattering lengths and mass ratio, while corresponding analytical insights are provided within the adiabatic hyperspherical formalism. The two- and three-body correlations of trimer states are substantially enhanced compared to the other eigenstates. The two-body contact of the atom-dimer and trap states features an upper bound regardless of the statistics, treated semi-classically and having an analytical prediction in the limit of large scattering lengths. Such an upper bound is absent in the three-body contact. Interestingly, by tuning the interspecies scattering length the contacts oscillate as the atom-dimer and trap states change character through the existent avoided-crossings in the energy spectra. For thermal gases, a gradual suppression of the involved two- and three-body correlations is evinced manifesting the impact of thermal effects. Moreover, spatial configurations of the distinct eigenstates ranging from localized structures to angular anisotropic patterns are captured. Our results provide valuable insights into the inherent correlation mechanisms of few-body mixtures which can be implemented in recent ultracold atom experiments and will be especially useful for probing the crossover from few- to many-atom systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا