ﻻ يوجد ملخص باللغة العربية
Let $G$ be a graph and ${mathcal{tau}}: V(G)rightarrow Bbb{N}cup {0}$ be an assignment of thresholds to the vertices of $G$. A subset of vertices $D$ is said to be a dynamic monopoly corresponding to $(G, tau)$ if the vertices of $G$ can be partitioned into subsets $D_0, D_1,..., D_k$ such that $D_0=D$ and for any $iin {0, ..., k-1}$, each vertex $v$ in $D_{i+1}$ has at least $tau(v)$ neighbors in $D_0cup ... cup D_i$. Dynamic monopolies are in fact modeling the irreversible spread of influence in social networks. In this paper we first obtain a lower bound for the smallest size of any dynamic monopoly in terms of the average threshold and the order of graph. Also we obtain an upper bound in terms of the minimum vertex cover of graphs. Then we derive the upper bound $|G|/2$ for the smallest size of any dynamic monopoly when the graph $G$ contains at least one odd vertex, where the threshold of any vertex $v$ is set as $lceil (deg(v)+1)/2 rceil$ (i.e. strict majority threshold). This bound improves the best known bound for strict majority threshold. We show that the latter bound can be achieved by a polynomial time algorithm. We also show that $alpha(G)+1$ is an upper bound for the size of strict majority dynamic monopoly, where $alpha(G)$ stands for the matching number of $G$. Finally, we obtain a basic upper bound for the smallest size of any dynamic monopoly, in terms of the average threshold and vertex degrees. Using this bound we derive some other upper bounds.
Let $G$ be a graph and $tau$ be an assignment of nonnegative integer thresholds to the vertices of $G$. A subset of vertices $D$ is said to be a $tau$-dynamic monopoly, if $V(G)$ can be partitioned into subsets $D_0, D_1, ldots, D_k$ such that $D_0=D
Let $G$ be a directed graph such that the in-degree of any vertex $G$ is at least one. Let also ${mathcal{tau}}: V(G)rightarrow Bbb{N}$ be an assignment of thresholds to the vertices of $G$. A subset $M$ of vertices of $G$ is called a dynamic monopol
Suppose that the vertices of a graph $G$ are colored with two colors in an unknown way. The color that occurs on more than half of the vertices is called the majority color (if it exists), and any vertex of this color is called a majority vertex. We
Majority dynamics on a graph $G$ is a deterministic process such that every vertex updates its $pm 1$-assignment according to the majority assignment on its neighbor simultaneously at each step. Benjamini, Chan, ODonnel, Tamuz and Tan conjectured tha
Let $G$ be a finite, undirected $d$-regular graph and $A(G)$ its normalized adjacency matrix, with eigenvalues $1 = lambda_1(A)geq dots ge lambda_n ge -1$. It is a classical fact that $lambda_n = -1$ if and only if $G$ is bipartite. Our main result p