ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave-induced excess quasiparticles in superconducting resonators measured through correlated conductivity fluctuations

130   0   0.0 ( 0 )
 نشر من قبل Pieter de Visser
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured the number of quasiparticles and their lifetime in aluminium superconducting microwave resonators. The number of excess quasiparticles below 160 mK decreases from 72 to 17 $mu$m$^{-3}$ with a 6 dB decrease of the microwave power. The quasiparticle lifetime increases accordingly from 1.4 to 3.5 ms. These properties of the superconductor were measured through the spectrum of correlated fluctuations in the quasiparticle system and condensate of the superconductor, which show up in the resonator amplitude and phase respectively. Because uncorrelated noise sources vanish, fluctuations in the superconductor can be studied with a sensitivity close to the vacuum noise.



قيم البحث

اقرأ أيضاً

Dielectric measurements on insulating materials at cryogenic temperatures can be challenging, depending on the frequency and temperature ranges of interest. We present a technique to study the dielectric properties of bulk dielectrics at GHz frequenc ies. A superconducting coplanar Nb resonator is deposited directly on the material of interest, and this resonator is then probed in distant-flip-chip geometry with a microwave feedline on a separate chip. Evaluating several harmonics of the resonator gives access to various probing frequencies, in the present studies up to 20 GHz. We demonstrate the technique on three different materials (MgO, LaAlO3, and TiO2), at temperatures between 1.4 K and 7 K.
Slow noise processes, with characteristic timescales ~1s, have been studied in planar superconducting resonators. A frequency locked loop is employed to track deviations of the resonator centre frequency with high precision and bandwidth. Comparative measurements are made in varying microwave drive, temperature and between bare resonators and those with an additional dielectric layer. All resonators are found to exhibit flicker frequency noise which increases with decreasing microwave drive. We also show that an increase in temperature results in a saturation of flicker noise in resonators with an additional dielectric layer, while bare resonators stop exhibiting flicker noise instead showing a random frequency walk process.
We report on the design, fabrication and characterization of superconducting coplanar waveguide resonators with nanoscopic constrictions. By reducing the size of the center line down to 50 nm, the radio frequency currents are concentrated and the mag netic field in its vicinity is increased. The device characteristics are only slightly modified by the constrictions, with changes in resonance frequency lower than 1% and internal quality factors of the same order of magnitude as the original ones. These devices could enable the achievement of higher couplings to small magnetic samples or even to single molecular spins and have applications in circuit quantum electrodynamics, quantum computing and electron paramagnetic resonance.
163 - J. Wenner , Yi Yin , Erik Lucero 2012
Superconducting qubits probe environmental defects such as non-equilibrium quasiparticles, an important source of decoherence. We show that hot non-equilibrium quasiparticles, with energies above the superconducting gap, affect qubits differently fro m quasiparticles at the gap, implying qubits can probe the dynamic quasiparticle energy distribution. For hot quasiparticles, we predict a non-neligable increase in the qubit excited state probability P_e. By injecting hot quasiparticles into a qubit, we experimentally measure an increase of P_e in semi-quantitative agreement with the model and rule out the typically assumed thermal distribution.
We have generated frequency combs spanning 0.5 to 20 GHz in superconducting half wave resonators at T=3 K. Thin films of niobium-titanium nitride enabled this development due to their low loss, high nonlinearity, low frequency dispersion, and high cr itical temperature. The combs nucleate as sidebands around multiples of the pump frequency. Selection rules for the allowed frequency emission are calculated using perturbation theory and the measured spectrum is shown to agree with the theory. The sideband spacing is measured to be accurate to 1 part in 10 million. The sidebands coalesce into a continuous comb structure that has been observed to cover at least 6 octaves in frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا