ﻻ يوجد ملخص باللغة العربية
Precise control over the potential of an electrically isolated proof mass is necessary for the operation of devices such as a Gravitational Reference Sensor (GRS) and satellite missions such as LISA. We show that AlGaN UV LEDs operating at 255 nm are an effective substitute for Mercury vapor lamps used in previous missions because of their ability to withstand space qualification levels of vibration and thermal cycling. After 27 thermal and thermal vacuum cycles and 9 minutes of 14.07 g RMS vibration, there is less than 3% change in current draw, less than 15% change in optical power, and no change in spectral peak or FWHM (full width at half maximum). We also demonstrate UV LED stimulated photoemission from a wide variety of thin film carbide proof mass coating candidates (SiC, Mo2C, TaC, TiC, ZrC) that were applied using electron beam evaporation on an Aluminum 6061-T6 substrate. All tested carbide films have measured quantum efficiencies of 3.8-6.8*10^-7 and reflectivities of 0.11-0.15, which compare favorably with the properties of previously used gold films. We demonstrate the ability to control proof mass potential on an 89 mm diameter spherical proof mass over a 20 mm gap in a GRS-like configuration. Proof mass potential was measured via a non-contact DC probe, which would allow control without introducing dynamic forcing of the spacecraft. Finally we provide a look ahead to an upcoming technology demonstration mission of UV LEDs and future applications toward charge control of electrically isolated proof masses.
The UV LED mission demonstrates the precise control of the potential of electrically isolated test masses that is essential for the operation of space accelerometers and drag free sensors. Accelerometers and drag free sensors were and remain at the c
A stable reference light source based on an LED (Light Emission Diode) is presented for stabilizing the conversion gain of the opto-electronic system of a gamma- and fast-neutron radiographic and tomographic imaging device. A constant fraction of the
We report on spectroscopy and time-of-flight measurements using an 18 keV fast-pulsed photoelectron source of adjustable intensity, ranging from single photoelectrons per pulse to 5 photoelectrons per microsecond at pulse repetition rates of up to 10
KAGRA is a 3-km cryogenic interferometric gravitational wave telescope located at an underground site in Japan. In order to achieve its target sensitivity, the relative positions of the mirrors of the interferometer must be finely adjusted with attac
The LISA Pathfinder charge management device was responsible for neutralising the cosmic ray induced electric charge that inevitably accumulated on the free-falling test masses at the heart of the experiment. We present measurements made on ground an