ترغب بنشر مسار تعليمي؟ اضغط هنا

The dynamic atmospheres of Mira stars: comparing the CODEX models to PTI time series of TU And

84   0   0.0 ( 0 )
 نشر من قبل Michel Hillen
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our comprehension of stellar evolution on the AGB still faces many difficulties. To improve on this, a quantified understanding of large-amplitude pulsator atmospheres and interpretation in terms of their fundamental stellar parameters are essential. We wish to evaluate the effectiveness of the recently released CODEX dynamical model atmospheres in representing M-type Mira variables through a confrontation with the time-resolved spectro-photometric and interferometric PTI data set of TU And. We calibrated the interferometric K-band time series to high precision. This results in 50 nights of observations, covering 8 subsequent pulsation cycles. At each phase, the flux at 2.2$mu$m is obtained, along with the spectral shape and visibility points in 5 channels across the K-band. We compared the data set to the relevant dynamical, self-excited CODEX models. Both spectrum and visibilities are consistently reproduced at visual minimum phases. Near maximum, our observations show that the current models predict a photosphere that is too compact and hot, and we find that the extended atmosphere lacks H2O opacity. Since coverage in model parameter space is currently poor, more models are needed to make firm conclusions on the cause of the discrepancies. We argue that for TU And, the discrepancy could be lifted by adopting a lower value of the mixing length parameter combined with an increase in the stellar mass and/or a decrease in metallicity, but this requires the release of an extended model grid.



قيم البحث

اقرأ أيضاً

We obtained K-band spectro-interferometric observations of the Miras R Cnc, X Hya, W Vel, and RW Vel with a spectral resolution of 1500 using the VLTI/AMBER instrument. We obtained concurrent JHKL photometry using the the Mk II instrument at the SAAO . Our sources have wavelength-dependent visibility values that are consistent with earlier low-resolution AMBER observations of S Ori and with the predictions of dynamic model atmosphere series based on self-excited pulsation models. The wavelength-dependent UD diameters show a minimum near the near-continuum bandpass at 2.25 um. They increase by up to 30% toward the H2O band at 2.0 um and by up to 70% at the CO bandheads. The dynamic model atmosphere series show a consistent wavelength-dependence, and their parameters such as the visual phase, effective temperature, and distances are consistent with independent estimates. The closure phases have significantly wavelength-dependent non-zero values indicating deviations from point symmetry. For example, the R Cnc closure phase is 110 degr in the 2.0 um H2O band, corresponding for instance to an additional unresolved spot contributing 3% of the total flux at a separation of ~4 mas. Our observations are consistent with the predictions of the latest dynamic model atmosphere series based on self-excited pulsation models. The wavelength-dependent radius variations are interpreted as the effect of molecular layers. The wavelength-dependent closure phase values are indicative of deviations from point symmetry at all wavelengths, thus a complex non-spherical stratification of the extended atmosphere. In particular, the significant deviation from point symmetry in the H2O band is interpreted as a signature on large scales of inhomogeneities or clumps in the water vapor layer. The observed inhomogeneities might be caused by pulsation- and shock-induced chaotic motion in the extended atmosphere.
We present an overview on our project to study the extended atmospheres and dust formation zones of Mira stars using coordinated observations with the Very Large Telescope Interferometer (VLTI), the Very Long Baseline Array (VLBA), and the Atacama Pa thfinder Experiment (APEX). The data are interpreted using an approach of combining recent dynamic model atmospheres with a radiative transfer model of the dust shell, and combining the resulting model structure with a maser propagation model.
During the last decades there is a continuing international endeavor in developing realistic space weather prediction tools aiming to forecast the conditions on the Sun and in the interplanetary environment. These efforts have led to the need of deve loping appropriate metrics in order to assess the performance of those tools. Metrics are necessary for validating models, comparing different models and monitoring adjustments or improvements of a certain model over time. In this work, we introduce the Dynamic Time Warping (DTW) as an alternative way to validate models and, in particular, to quantify differences between observed and synthetic (modeled) time series for space weather purposes. We present the advantages and drawbacks of this method as well as applications on WIND observations and EUHFORIA modeled output at L1. We show that DTW is a useful tool that permits the evaluation of both the fast and slow solar wind. Its distinctive characteristic is that it warps sequences in time, aiming to align them with the minimum cost by using dynamic programming. It can be applied in two different ways for the evaluation of modeled solar wind time series. The first way calculates the so-called sequence similarity factor (SSF), a number that provides a quantification of how good the forecast is, compared to a best and a worst case prediction scenarios. The second way quantifies the time and amplitude differences between the points that are best matched between the two sequences. As a result, it can serve as a hybrid metric between continuous measurements (such as, e.g., the correlation coefficient) and point-by-point comparisons. We conclude that DTW is a promising technique for the assessment of solar wind profiles offering functions that other metrics do not, so that it can give at once the most complete evaluation profile of a model.
More than half of the dust and heavy element enrichment in galaxies originates from the winds and outflows of evolved, low-to-intermediate mass stars on the asymptotic giant branch (AGB). However, numerous details of the physics of late-stage stellar mass loss remain poorly understood, ranging from the wind launching mechanism(s) to the geometry and timescales of the mass loss. One of the major challenges to understanding AGB winds is that the AGB evolutionary phase is characterized by the interplay between highly complex and dynamic processes, including radial pulsations, shocks, magnetic fields, opacity changes due to dust and molecule formation, and large-scale convective flows. Collectively, these phenomena lead to changes in the observed stellar properties on timescales of days to years. Probing the complex atmospheric physics of AGB stars therefore demands exquisite spatial resolution, coupled with temporal monitoring over both short and long timescales. Observations of the molecular maser lines that arise in the winds and outflows of AGB stars using very long baseline interferometry (VLBI) offer one of the most powerful tools available to measure the atmospheric dynamics, physical conditions, and magnetic fields with ultra-high spatial resolution (i.e., up to tens of microarcseconds, corresponding to ~0.002R* at d~150pc), coupled with the ability to track features and phenomena on timescales of days to years. Observational advances in the coming decade will enable contemporaneous observations of an unprecedented number of maser transitions spanning centimeter to submillimeter wavelengths. In evolved stars, observations of masers within the winds and outflows are poised to provide groundbreaking new insights into the atmospheric physics and mass-loss process.
300 - K.-H. Hofmann 2000
We present K-band observations of five Mira stars with the IOTA interferometer. The interferograms were obtained with the FLUOR fiber optics beam combiner which provides high-accuracy visibility measurements in spite of time-variable atmospheric cond itions. For the Mira stars X Oph, R Aql, RU Her, R Ser, and V CrB we derived the uniform-disk diameters 11.7 mas, 10.9 mas, 8.4 mas, 8.1 mas, and 7.9 mas (+/-0.3 mas), respectively. Simultaneous photometric observations yielded the bolometric fluxes. The derived angular Rosseland radii and the bolometric fluxes allowed the determination of effective temperatures. For instance, the effective temperature of R Aql was determined to be 3072 K +/- 161 K. A Rosseland radius for R Aql of 250 Rsun +/- 63 Rsun was derived from the angular Rosseland radius of 5.5 mas +/- 0.2 mas and the HIPPARCOS parallax of 4.73 mas +/- 1.19 mas. The observations were compared with theoretical Mira star models of Bessel, Scholz and Wood (1996) and Hofmann, Scholz and Wood (1998).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا