ﻻ يوجد ملخص باللغة العربية
Our comprehension of stellar evolution on the AGB still faces many difficulties. To improve on this, a quantified understanding of large-amplitude pulsator atmospheres and interpretation in terms of their fundamental stellar parameters are essential. We wish to evaluate the effectiveness of the recently released CODEX dynamical model atmospheres in representing M-type Mira variables through a confrontation with the time-resolved spectro-photometric and interferometric PTI data set of TU And. We calibrated the interferometric K-band time series to high precision. This results in 50 nights of observations, covering 8 subsequent pulsation cycles. At each phase, the flux at 2.2$mu$m is obtained, along with the spectral shape and visibility points in 5 channels across the K-band. We compared the data set to the relevant dynamical, self-excited CODEX models. Both spectrum and visibilities are consistently reproduced at visual minimum phases. Near maximum, our observations show that the current models predict a photosphere that is too compact and hot, and we find that the extended atmosphere lacks H2O opacity. Since coverage in model parameter space is currently poor, more models are needed to make firm conclusions on the cause of the discrepancies. We argue that for TU And, the discrepancy could be lifted by adopting a lower value of the mixing length parameter combined with an increase in the stellar mass and/or a decrease in metallicity, but this requires the release of an extended model grid.
We obtained K-band spectro-interferometric observations of the Miras R Cnc, X Hya, W Vel, and RW Vel with a spectral resolution of 1500 using the VLTI/AMBER instrument. We obtained concurrent JHKL photometry using the the Mk II instrument at the SAAO
We present an overview on our project to study the extended atmospheres and dust formation zones of Mira stars using coordinated observations with the Very Large Telescope Interferometer (VLTI), the Very Long Baseline Array (VLBA), and the Atacama Pa
During the last decades there is a continuing international endeavor in developing realistic space weather prediction tools aiming to forecast the conditions on the Sun and in the interplanetary environment. These efforts have led to the need of deve
More than half of the dust and heavy element enrichment in galaxies originates from the winds and outflows of evolved, low-to-intermediate mass stars on the asymptotic giant branch (AGB). However, numerous details of the physics of late-stage stellar
We present K-band observations of five Mira stars with the IOTA interferometer. The interferograms were obtained with the FLUOR fiber optics beam combiner which provides high-accuracy visibility measurements in spite of time-variable atmospheric cond