ﻻ يوجد ملخص باللغة العربية
Most recent progress in understanding the dynamical evolution of star clusters relies on direct N-body simulations. Owing to the computational demands, and the desire to model more complex and more massive star clusters, hardware calculational accelerators, such as GRAPE special-purpose hardware or, more recently, GPUs (i.e. graphics cards), are generally utilised. In addition, simulations can be accelerated by adjusting parameters determining the calculation accuracy (i.e. changing the internal simulation time step used for each star). We extend our previous thorough comparison (Anders et al. 2009) of basic quantities as derived from simulations performed either with STARLAB/KIRA or NBODY6. Here we focus on differences arising from using different hardware accelerations (including the increasingly popular graphic card accelerations/GPUs) and different calculation accuracy settings. We use the large number of star cluster models (for a fixed stellar mass function, without stellar/binary evolution, primordial binaries, external tidal fields etc) already used in the previous paper, evolve them with STARLAB/KIRA (and NBODY6, where required), analyse them in a consistent way and compare the averaged results quantitatively. For this quantitative comparison, we apply the bootstrap algorithm for functional dependencies developed in our previous study. In general we find very high comparability of the simulation results, independent of the used computer hardware (including the hardware accelerators) and the used N-body code. For the tested accuracy settings we find that for reduced accuracy (i.e. time step at least a factor 2.5 larger than the standard setting) most simulation results deviate significantly from the results using standard settings. The remaining deviations are comprehensible and explicable.
N-body simulations are widely used to simulate the dynamical evolution of a variety of systems, among them star clusters. Much of our understanding of their evolution rests on the results of such direct N-body simulations. They provide insight in the
We present GAMER-2, a GPU-accelerated adaptive mesh refinement (AMR) code for astrophysics. It provides a rich set of features, including adaptive time-stepping, several hydrodynamic schemes, magnetohydrodynamics, self-gravity, particles, star format
We give an overview about equations of state (EOS) which are currently available for simulations of core-collapse supernovae and neutron star mergers. A few selected important aspects of the EOS, such as the symmetry energy, the maximum mass of neutr
The SDSS-IV Mapping Nearby Galaxies at APO (MaNGA) program has been operating from 2014-2020, and has now observed a sample of 9,269 galaxies in the low redshift universe (z ~ 0.05) with integral-field spectroscopy. With rest-optical (lambdalambda 0.
Cosmological simulations of galaxy formation often rely on prescriptions for star formation and feedback that depend on halo properties such as halo mass, central over-density, and virial temperature. In this paper we address the convergence of indiv