ﻻ يوجد ملخص باللغة العربية
We present a construction of the integrand of the correlation function of four stress-tensor multiplets in N=4 SYM at weak coupling. It does not rely on Feynman diagrams and makes use of the recently discovered symmetry of the integrand under permutations of external and integration points. This symmetry holds for any gauge group, so it can be used to predict the integrand both in the planar and non-planar sectors. We demonstrate the great efficiency of graph-theoretical tools in the systematic study of the possible permutation symmetric integrands. We formulate a general ansatz for the correlation function as a linear combination of all relevant graph topologies, with arbitrary coefficients. Powerful restrictions on the coefficients come from the analysis of the logarithmic divergences of the correlation function in two singular regimes: Euclidean short-distance and Minkowski light-cone limits. We demonstrate that the planar integrand is completely fixed by the procedure up to six loops and probably beyond. In the non-planar sector, we show the absence of non-planar corrections at three loops and we reduce the freedom at four loops to just four constants. Finally, the correlation function/amplitude duality allows us to show the complete agreement of our results with the four-particle planar amplitude in N=4 SYM.
We give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of N=4 SYM in twistor space. It yields the correlation functions in the Born approximation as a sum o
We derive the explicit expression for the four-point correlation function of stress-energy tensors in four-dimensional N=4 superconformal theory. We show that it has a remarkably simple and suggestive form allowing us to predict a large class of four
We compute the dilatation generator in the su(2) sector of planar N=4 super Yang-Mills theory at four-loops. We use the known world-sheet scattering matrix to constrain the structure of the generator. The remaining few coefficients can be computed di
We consider supergravity theories with 16 supercharges in Minkowski space with dimensions $d>3$. We argue that there is an upper bound on the number of massless modes in such theories depending on $d$. In particular we show that the rank of the gauge
We present numerical results for the nonplanar lightlike cusp and collinear anomalous dimension at four loops in ${mathcal N} = 4$ SYM theory, which we infer from a calculation of the Sudakov form factor. The latter is expressed as a rational linear