ترغب بنشر مسار تعليمي؟ اضغط هنا

Demonstration of On-Sky Calibration of Astronomical Spectra using a 25 GHz near-IR Laser Frequency Comb

104   0   0.0 ( 0 )
 نشر من قبل Gabriel Ycas
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe and characterize a 25 GHz laser frequency comb based on a cavity-filtered erbium fiber mode-locked laser. The comb provides a uniform array of optical frequencies spanning 1450 nm to 1700 nm, and is stabilized by use of a global positioning system referenced atomic clock. This comb was deployed at the 9.2 m Hobby-Eberly telescope at the McDonald Observatory where it was used as a radial velocity calibration source for the fiber-fed Pathfinder near-infrared spectrograph. Stellar targets were observed in three echelle orders over four nights, and radial velocity precision of sim10 m/s (sim6 MHz) was achieved from the comb-calibrated spectra.



قيم البحث

اقرأ أيضاً

117 - Hanzhong Wu , Jun Ke , Panpan Wang 2021
In this work, we describe an updated version of single arm locking, and the noise amplification due to the nulls can be flexibly restricted with the help of optical frequency comb. We show that, the laser phase noise can be divided by a specific fact or with optical frequency comb as the bridge. The analytical results indicate that, the peaks in the science band have been greatly reduced. The performance of the noise suppression shows that the total noise after arm locking can well satisfy the requirement of time delay interferometry, even with the free-running laser source. We also estimate the frequency pulling characteristics of the updated single arm locking, and the results suggest that the pulling rate can be tolerated, without the risk of mode hopping. Arm locking will be a valuable solution for the noise reduction in the space-borne GW detectors. We demonstrate that, with the precise control of the returned laser phase noise, the noise amplification in the science band can be efficiently suppressed based on the updated single arm locking. Not only our method allows the suppression of the peaks, the high gain, low pulling rate, it can also serve for full year, without the potential risk of locking failure due to the arm length mismatch. We finally discuss the unified demonstration of the updated single arm locking, where both the local and the returned laser phase noises can be tuned to generate the expected arm-locking sensor actually. Our work could provide a powerful method for the arm locking in the future space-borne GW detectors.
193 - Michael T. Murphy 2012
Precise astronomical spectroscopic analyses routinely assume that individual pixels in charge-coupled devices (CCDs) have uniform sensitivity to photons. Intra-pixel sensitivity (IPS) variations may already cause small systematic errors in, for examp le, studies of extra-solar planets via stellar radial velocities and cosmological variability in fundamental constants via quasar spectroscopy, but future experiments requiring velocity precisions approaching ~1 cm/s will be more strongly affected. Laser frequency combs have been shown to provide highly precise wavelength calibration for astronomical spectrographs, but here we show that they can also be used to measure IPS variations in astronomical CCDs in situ. We successfully tested a laser frequency comb system on the Ultra-High Resolution Facility spectrograph at the Anglo-Australian Telescope. By modelling the 2-dimensional comb signal recorded in a single CCD exposure, we find that the average IPS deviates by <8 per cent if it is assumed to vary symmetrically about the pixel centre. We also demonstrate that series of comb exposures with absolutely known offsets between them can yield tighter constraints on symmetric IPS variations from ~100 pixels. We discuss measurement of asymmetric IPS variations and absolute wavelength calibration of astronomical spectrographs and CCDs using frequency combs.
134 - X. Yi , K. Vahala , S.Diddams 2015
We describe a successful effort to produce a laser comb around 1.55 $mu$m in the astronomical H band using a method based on a line-referenced, electro-optical-modulation frequency comb. We discuss the experimental setup, laboratory results, and proo f of concept demonstrations at the NASA Infrared Telescope Facility (IRTF) and the Keck-II telescope. The laser comb has a demonstrated stability of $<$ 200 kHz, corresponding to a Doppler precision of ~0.3 m/s. This technology, when coupled with a high spectral resolution spectrograph, offers the promise of $<$1 m/s radial velocity precision suitable for the detection of Earth-sized planets in the habitable zones of cool M-type stars.
Beginning with a continuous wave laser at 1064 nm, we generate a 30 GHz electro-optic frequency comb which contains 100 lines spanning 3 THz. The initial comb is subsequently amplified, spectrally broadened in normal dispersion photonic crystal fiber , and then temporally compressed to provide 74 fs pulses with average power of up to 2.6 W. When launched into a second photonic crystal fiber with anomalous dispersion, a supercontinuum spanning 800-1350 nm is generated. Second harmonic generation allows for extension of the 30 GHz comb into the visible, yielding greater than 300 THz of total spectral bandwidth. Such a broad bandwidth, high repetition rate comb is a compelling source for astronomical spectrograph calibration.
We present a laser frequency comb based upon a 250 MHz mode-locked erbium-doped fiber laser that spans more than 300 terahertz of bandwidth, from 660 nm to 2000 nm. The system generates 1.2 nJ, 70 fs pulses at 1050 nm by amplifying the 1580 nm laser light in Er:fiber, followed by nonlinear broadening to 1050 nm and amplification in Yb:fiber. Extension of the frequency comb into the visible is achieved by supercontinuum generation from the 1050 nm light. Comb coherence is verified with cascaded f-2f interferometry and comparison to a frequency stabilized laser.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا